974 resultados para Resonance Fluorescence-spectrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM-EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes-ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D N-15,H-1]HSQC spectrum with two 2D spectra can result in approximate to 50% assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12kDa) and the 29kDa (268 residue) -subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in protein folding is whether the coil to globule collapse transition occurs during the initial stages of folding (burst phase) or simultaneously with the protein folding transition. Single molecule fluorescence resonance energy transfer (FRET) and small-angle X-ray scattering (SAXS) experiments disagree on whether Protein L collapse transition occurs during the burst phase of folding. We study Protein L folding using a coarse-grained model and molecular dynamics simulations. The collapse transition in Protein L is found to be concomitant with the folding transition. In the burst phase of folding, we find that FRET experiments overestimate radius of gyration, R-g, of the protein due to the application of Gaussian polymer chain end-to-end distribution to extract R-g from the FRET efficiency. FRET experiments estimate approximate to 6 angstrom decrease in R-g when the actual decrease is approximate to 3 angstrom on guanidinium chloride denaturant dilution from 7.5 to 1 M, thereby suggesting pronounced compaction in the protein dimensions in the burst phase. The approximate to 3 angstrom decrease is close to the statistical uncertainties of the R-g data measured from SAXS experiments, which suggest no compaction, leading to a disagreement with the FRET experiments. The transition-state ensemble (TSE) structures in Protein L folding are globular and extensive in agreement with the Psi-analysis experiments. The results support the hypothesis that the TSE of single domain proteins depends on protein topology and is not stabilized by local interactions alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide-CoFe2O4 nanoparticle composites were synthesized using a two step synthesis method in which graphene oxide was initially synthesized followed by precipitation of CoFe2O4 nanoparticles in a reaction mixture containing graphene oxide. Samples were extracted from the reaction mixture at different times at 80 degrees C. All the extracted samples contained CoFe2O4 nanoparticles formed over the graphene oxide. It was observed that the increase in the reflux time significantly increased the saturation magnetization value for the superparamagnetic nanoparticles in the composite. It was also noticed that the size of the nanoparticles increased with increase in the reflux time. Transverse relaxivity of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with the reflux time. Graphene oxide-CoFe2O4 nanoparticle composites also exhibit biocompatibility towards the MCF-7 cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inner ear has been shown to characterize an acoustic stimuli by transducing fluid motion in the inner ear to mechanical bending of stereocilia on the inner hair cells (IHCs). The excitation motion/energy transferred to an IHC is dependent on the frequency spectrum of the acoustic stimuli, and the spatial location of the IHC along the length of the basilar membrane (BM). Subsequently, the afferent auditory nerve fiber (ANF) bundle samples the encoded waveform in the IHCs by synapsing with them. In this work we focus on sampling of information by afferent ANFs from the IHCs, and show computationally that sampling at specific time instants is sufficient for decoding of time-varying acoustic spectrum embedded in the acoustic stimuli. The approach is based on sampling the signal at its zero-crossings and higher-order derivative zero-crossings. We show results of the approach on time-varying acoustic spectrum estimation from cricket call signal recording. The framework gives a time-domain and non-spatial processing perspective to auditory signal processing. The approach works on the full band signal, and is devoid of modeling any bandpass filtering mimicking the BM action. Instead, we motivate the approach from the perspective of event-triggered sampling by afferent ANFs on the stimuli encoded in the IHCs. Though the approach gives acoustic spectrum estimation but it is shallow on its complete understanding for plausible bio-mechanical replication with current mammalian auditory mechanics insights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) is a key reactive oxygen species and a messenger in cellular signal transduction apart from playing a vital role in many biological processes in living organisms. In this article, we present phenyl boronic acid-functionalized quinone-cyanine (QCy-BA) in combination with AT-rich DNA (exogenous or endogenous cellular DNA), i.e., QCy-BA subset of DNA as a stimuli-responsive NIR fluorescence probe for measuring in vitro levels of H2O2. In response to cellular H2O2 stimulus, QCy-BA converts into QCy-DT, a one-donor-two-acceptor (D2A) system that exhibits switch-on NIR fluorescence upon binding to the DNA minor groove. Fluorescence studies on the combination probe QCy-BA subset of DNA showed strong NIR fluorescence selectively in the presence of H2O2. Furthermore, glucose oxidase (GOx) assay confirmed the high efficiency of the combination probe QCy-BA subset of DNA for probing H2O2 generated in situ through GOx-mediated glucose oxidation. Quantitative analysis through fluorescence plate reader, flow cytometry and live imaging approaches showed that QCy-BA is a promising probe to detect the normal as well as elevated levels of H2O2 produced by EGF/Nox pathways and post-genotoxic stress in both primary and senescent cells. Overall, QCy-BA, in combination with exogenous or cellular DNA, is a versatile probe to quantify and image H2O2 in normal and disease-associated cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain and the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the Fe. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. We show via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study an s-channel resonance R as a viable candidate to fit the diboson excess reported by ATLAS. We compute the contribution of the similar to 2 TeV resonance R to semileptonic and leptonic final states at the 13 TeV LHC. To explain the absence of an excess in the semileptonic channel, we explore the possibility where the particle R decays to additional light scalars X, X or X, Y. A modified analysis strategy has been proposed to study the three-particle final state of the resonance decay and to identify decay channels of X. Associated production of R with gauge bosons has been studied in detail to identify the production mechanism of R. We construct comprehensive categories for vector and scalar beyond-standard-model particles which may play the role of particles R, X, Y and find alternate channels to fix the new couplings and search for these particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggregation behaviors of two surfactants with the same hydrophobic tail, sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP), have been investigated by the fluorescence technique and z-potential (ζ) measurements. Five fine peaks of the pyrene molecule fluorescence spectroscopy appear in the surfactant solution, and the micropolarity at which pyrene locates is monitored from the intensity ratio of the first (I1) and the third peak (I3). A wide peak around 475 nm, the emission spectra of the excimer of pyrene molecules, is observed in the NaDEHP solution, while this is not found for the AOT system. The value of I1/I3 decreases in a more limited concentration range for the AOT system than for NaDEHP, indicating that small aggregates can be more easily formed by NaDEHP molecules. The z-potential results for the aggregates formed by the two surfactants show that the interaction between AOT and PVP is stronger than that between NaDEHP and PVP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic phenomena in the wake of thermal convection flow fields above a heating flat plate were investigated experimentally. A newly developed electron beam fluorescence technique (EBF) was used to simultaneously measure density fluctuation at 7 points in a cross section above the plate. Correlation dimensions, intermittence coefficients, Fourier spectrum have been obtained for different Grashof numbers. Spatial distribution of correlation dimensions are presented. The experimental result shows that there is a certain relationship between the density fluctuation and the Gr number. And time-spacial characteristic of chaos evolution is also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable materials with high anisotropy of refractive index and low loss are of particular interest in the microwave and terahertz range. Nematic liquid crystals are highly sensitive to electric and magnetic fields and may be designed to have particularly high birefringence. In this paper we investigate birefringence and absorption losses in an isothiocyanate based liquid crystal (designed for high anisotropy) in a broad range of the electromagnetic spectrum, namely 0.1-4 GHz, 30 GHz, 0.5-1.8 THz, and in the visible and near-infrared region (400 nm-1600 nm). We report high birefringence (Δn = 0.19-0.395) and low loss in this material. This is attractive for tunable microwave and terahertz device applications.