948 resultados para Renewable feedstocks
Resumo:
The thesis interprets the caveat of Article 194(2) TFEU in order to assess the use of the Article as a legal basis for energy provisions provided by the European Union. The research subject is the Energy Title in the Treaty of the Functioning of the European Union and the possibilities of the application of the legal basis provided therein. The purpose is analysis of the possibilities for providing of provisions within the scope of the caveat found in Article 194(2) TFEU with special regard to the possibilities of providing renewable energy legislation. The purpose of the thesis is on one hand to provide an overview of the premises for providing of energy provisions in the EU, and on the other hand to analyse the Treaty text in order to determine the legal basis for energy provisions. The ultimate objective is to determine the correct legal basis for renewable energy provisions, aimed at the mitigation of climate change. According to Article 194(2) TFEU, the practice of the shared legislative powers in the field of energy are restricted by the retention of certain energy matters within the power of the Member States. The wording of the caveat containing the restrictions is open to interpretation and has been a subject of extensive discussion. Many scholars have argued that the caveat in Article 194(2) TFEU might obstruct decision-making in energy matters. This argument is contested, and the factual impact of the codification of the energy competences is analysed. The correct legal basis for energy provisions depends on the final interpretation of the text of the caveat and the level of significance of the effect of the measure. The use of Article 194(2) TFEU as a legal basis might not be the only option. There is a possibility that the legal bases within the Environmental Title might be used as legal bases for energy provisions in addition to Article 194(2) TFEU.
Resumo:
Increasingly growing share of distributed generation in the whole electrical power system’s generating system is currently a worldwide tendency, driven by several factors, encircling mainly difficulties in refinement of megalopolises’ distribution networks and its maintenance; widening environmental concerns adding to both energy efficiency approaches and installation of renewable sources based generation, inherently distributed; increased power quality and reliability needs; progress in IT field, making implementable harmonization of needs and interests of different-energy-type generators and consumers. At this stage, the volume, formed by system-interconnected distributed generation facilities, have reached the level of causing broad impact toward system operation under emergency and post-emergency conditions in several EU countries, thus previously implementable approach of their preliminary tripping in case of a fault, preventing generating equipment damage and disoperation of relay protection and automation, is not applicable any more. Adding to the preceding, withstand capability and transient electromechanical stability of generating technologies, interconnecting in proximity of load nodes, enhanced significantly since the moment Low Voltage Ride-Through regulations, followed by techniques, were introduced in Grid Codes. Both aspects leads to relay protection and auto-reclosing operation in presence of distributed generation generally connected after grid planning and construction phases. This paper proposes solutions to the emerging need to ensure correct operation of the equipment in question with least possible grid refinements, distinctively for every type of distributed generation technology achieved its technical maturity to date and network’s protection. New generating technologies are equivalented from the perspective of representation in calculation of initial steady-state short-circuit current used to dimension current-sensing relay protection, and widely adopted short-circuit calculation practices, as IEC 60909 and VDE 0102. The phenomenon of unintentional islanding, influencing auto-reclosing, is addressed, and protection schemes used to eliminate an sustained island are listed and characterized by reliability and implementation related factors, whereas also forming a crucial aspect of realization of the proposed protection operation relieving measures.
Resumo:
Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.
Resumo:
Tutkielman tavoitteena on selvittää pienten ja keskisuurten yritysten aurinkovoimalainvestointiin liittyviä tekijöitä sekä erityispiirteitä. Tutkielmassa pk-yritykset on rajattu alueellisesti Etelä-Suomeen ja tekijöitä tarkastellaan investoinnin sekä päätöksenteon näkökulmasta. Keskeisenä asiana tutkielmassa on aurinkosähkömarkkinoiden nykytila sekä mahdollisuudet. Osatavoitteena on tutkia aurinkosähkön hyödyntämistä ja käyttöönottoa Suomessa sekä luoda aurinkosähkön mahdollisuuksista selkeämpi kokonaiskuva. Tutkielman tutkimusmenetelmänä käytetään laadullista tutkimusta. Tutkielma koostuu teoreettisesta katsauksesta sekä empiirisestä osuudesta. Teoreettinen osuus tarkastelee investointeja ja rahoitusvaihtoehtoja. Empiirinen osuus pitää sisällään kolmen kohdeyrityksen haastattelut. Haastattelut toteutettiin marraskuussa 2015 aurinkosähkömarkkinoilla toimiville ratkaisuntarjoajille. Haastatteluiden avulla kartoitettiin alalla toteutettujen aurinkovoimalainvestointien taustatekijöitä ja erityispiirteitä. Tutkimustuloksina havaittiin selkeitä aurinkovoimalainvestointiin vaikuttavia tekijöitä sekä muutamia erityispiirteitä. Taloudellista kannattavuutta voidaan pitää investointien lähtökohtana. Tähän vaikuttaa uusiutuvan energian investointeihin saatavilla oleva energiatuki, jolla on merkittävä vaikutus pk-yrityksen päätöksentekoon. Lisäksi ekologinen sähkön tuotanto sekä omavaraisuus nousivat haastatteluissa esiin. Johtopäätöksinä voidaan todeta aurinkosähkön sisältävän useita tekijöitä ja erityispiirteitä, joita investoijien sekä ratkaisuntarjoajien tulee ottaa huomioon. Aurinkosähkömarkkinoiden suurta potentiaalia voidaan hyödyntää tehokkaammin kehittämällä alan tiedonjakoa esille nousseiden tekijöiden ja erityispiirteiden osalta.
Resumo:
Tässä kandidaatintyössä selvitetään aurinkosähköjärjestelmän rakentamisen kannattavuutta, teknisiä ratkaisuja sekä vaatimuksia pientaloon. Tutkimus suoritetaan tarkasteltavaan kiinteistöön aurinkosähköjärjestelmän teknisten ratkaisumahdollisuuksien sekä taloudellisesti kannattavimman mallin löytämiseksi. Työssä käydään läpi järjestelmän teknisten komponenttien rakennetta ja ominaisuuksia, niille määriteltyjä vaatimuksia sekä hintaa. Työssä myös simuloidaan eri voimalakokonaisuuksien tuotantoa voimalan koon optimoimiseksi kohteelle. Saatujen tulosten perusteella voimalan hankkiminen on vielä kallista ja takaisinmaksuajat pitkiä johtuen järjestelmän kalliista hinnasta. Tulevaisuudessa aurinkosähkö tulee olemaan kannattava investointi samalla, kun yhä enenevissä määrin energistyvässä maailmassa luovutaan fossiilisista polttoaineista niiden ympäristövaikutusten ja resurssien puutteen vuoksi. Aurinkosähkö on yksi potentiaalisista korvaajista tulevaisuudessa ja voimme odottaa järjestelmien hintojen laskevan kilpailun lisääntyessä. Myös valtion tuki tulevaisuudessa on mahdollinen pientuottajillekin.
Resumo:
Biodegradable waste quantities in Lithuania and their potential for the co-treatment in renewable energy and organic fertilizer production are investigated. Two scenarios are formulated to study the differences of the amounts of obtainable energy and fertilizers between different ways of utilization. In the first scenario, only digestion is used, and in the second scenario, other materials than straw are digested, and straw and the solid fraction of sewage sludge digestate are combusted. As a result, the amounts of heat and electricity, as well as the fertilizer amounts in the counties are obtained for both scenarios. Based on this study, the share of renewable energy in Lithuania could be doubled by the co-treatment of different biodegradable materials.
Resumo:
Tässä diplomityössä tarkasteltiin Nissan Leaf -sähköauton käytetyn litiumakun soveltuvuutta UPS-varavirtalaitteen energialähteeksi. Kun akku on heikentynyt niin ettei sen kapasiteetti enää ole riittävä autokäyttöön, sitä voidaan kuitenkin vielä hyödyntää muissa sovelluksissa, kuten UPS-laitteessa. Työ sai alkunsa osana GreenDataNet-projektia, jossa pyritään kehittämään datakeskuksiin ympäristöä vähemmän kuormittavia ratkaisuja käyttämällä uusiutuvia energialähteitä, akkujen uusiokäytöllä, sekä energianhallinnan optimoinnilla. Työssä käytiin läpi akun ja sen ohjausjärjestelmän ominaisuuksia, kerrottiin UPS:in ohjelmistoon tehdyistä muutoksista sekä esitettiin testitulokset. Lopputuloksena todettiin akun sopivan muuten hyvin UPS-käyttöön, mutta vaadittu päivittäinen kennojännitteiden tasaus ja sen aiheuttama katkos energian saatavuuteen heikentää UPSin käyttövarmuutta kuorman suojauksessa. Lopussa esitettiin muutamia ehdotuksia tämän ongelman korjaamiseksi.
Resumo:
The present world energy production is heavily relying on the combustion of solid fuels like coals, peat, biomass, municipal solid waste, whereas the share of renewable fuels is anticipated to increase in the future to mitigate climate change. In Finland, peat and wood are widely used for energy production. In any case, the combustion of solid fuels results in generation of several types of thermal conversion residues, such as bottom ash, fly ash, and boiler slag. The predominant residue type is determined by the incineration technology applied, while its composition is primarily relevant to the composition of fuels combusted. An extensive research has been conducted on technical suitability of ash for multiple recycling methods. Most of attention was drawn to the recycling of the coal combustion residues, as coal is the primary solid fuel consumed globally. The recycling methods of coal residues include utilization in a cement industry, in concrete manufacturing, and mine backfilling, to name few. Biomass combustion residues were also studied to some extent with forest fertilization, road construction, and road stabilization being the predominant utilization options. Lastly, residues form municipal solid waste incineration attracted more attention recently following the growing number of waste incineration plants globally. The recycling methods of waste incineration residues are the most limited due to its hazardous nature and varying composition, and include, among others, landfill construction, road construction, mine backfilling. In the study, environmental and economic aspects of multiple recycling options of thermal conversion residues generated within a case-study area were studied. The case-study area was South-East Finland. The environmental analysis was performed using an internationally recognized methodology — life cycle assessment. Economic assessment was conducted applying a widely used methodology — cost-benefit analysis. Finally, the results of the analyses were combined to enable easier comparison of the recycling methods. The recycling methods included the use of ash in forest fertilization, road construction, road stabilization, and landfill construction. Ash landfilling was set as a baseline scenario. Quantitative data about the amounts of ash generated and its composition was obtained from companies, their environmental reports, technical reports and other previously published literature. Overall, the amount of ash in the case-study area was 101 700 t. However, the data about 58 400 t of fly ash and 35 100 t of bottom ash and boiler slag were included in the study due to lack of data about leaching of heavy metals in some cases. The recycling methods were modelled according to the scientific studies published previously. Overall, the results of the study indicated that ash utilization for fertilization and neutralization of 17 600 ha of forest was the most economically beneficial method, which resulted in the net present value increase by 58% compared to ash landfilling. Regarding the environmental impact, the use of ash in the construction of 11 km of roads was the most attractive method with decreased environmental impact of 13% compared to ash landfilling. The least preferred method was the use of ash for landfill construction since it only enabled 11% increase of net present value, while inducing additional 1% of negative impact on the environment. Therefore, a following recycling route was proposed in the study. Where possible and legally acceptable, recycle fly and bottom ash for forest fertilization, which has strictest requirements out of all studied methods. If the quality of fly ash is not suitable for forest fertilization, then it should be utilized, first, in paved road construction, second, in road stabilization. Bottom ash not suitable for forest fertilization, as well as boiler slag, should be used in landfill construction. Landfilling should only be practiced when recycling by either of the methods is not possible due to legal requirements or there is not enough demand on the market. Current demand on ash and possible changes in the future were assessed in the study. Currently, the area of forest fertilized in the case-study are is only 451 ha, whereas about 17 600 ha of forest could be fertilized with ash generated in the region. Provided that the average forest fertilizing values in Finland are higher and the area treated with fellings is about 40 000 ha, the amount of ash utilized in forest fertilization could be increased. Regarding road construction, no new projects launched by the Center of Economic Development, Transport and the Environment in the case-study area were identified. A potential application can be found in the construction of private roads. However, no centralized data about such projects is available. The use of ash in stabilization of forest roads is not expected to increased in the future with a current downwards trend in the length of forest roads built. Finally, the use of ash in landfill construction is not a promising option due to the reducing number of landfills in operation in Finland.
Resumo:
The issue of energy efficiency is attracting more and more attention of academia, business and policy makers worldwide due to increasing environmental concerns, depletion of non-renewable energy resources and unstable energy prices. The significant importance of energy efficiency within gold mining industry is justified by considerable energy intensity of this industry as well as by the high share of energy costs in the total operational costs. In the context of increasing industrial energy consumption energy efficiency improvement may provide significant energy savings and reduction of CO2 emission that is highly important in order to contribute to the global goal of sustainability. The purpose of this research is to identify the ways of energy efficiency improvement relevant for a gold mining company. The study implements single holistic case study research strategy focused on a Russian gold mining company. The research involves comprehensive analysis of company’s energy performance including analysis of energy efficiency and energy management practices. This study provides following theoretical and managerial contributions. Firstly, it proposes a methodology for comparative analysis of energy performance of Russian and foreign gold mining companies. Secondly, this study provides comprehensive analysis of main energy efficiency challenges relevant for a Russian gold mining company. Finally, in order to overcome identified challenges this research conceives a guidance for a gold mining company for implementation of energy management system based on the ISO standard.
Resumo:
Energy scenarios are used as a tool to examine credible future states and pathways. The one who constructs a scenario defines the framework in which the possible outcomes exist. The credibility of a scenario depends on its compatibility with real world experiences, and on how well the general information of the study, methodology, and originality and processing of data are disclosed. In the thesis, selected global energy scenarios’ transparency and desirability from the society’s point of view were evaluated based on literature derived criteria. The global energy transition consists of changes to social conventions and economic development in addition to technological development. Energy solutions are economic and ethical choices due to far-reaching impacts of energy decision-making. Currently the global energy system is mostly based on fossil fuels, which is unsustainable over the long-term due to various reasons: negative climate change impacts, negative health impacts, depletion of fossil fuel reserves, resource-use conflicts with water management and food supply, loss of biodiversity, challenge to preserve ecosystems and resources for future generations, and inability of fossil fuels to provide universal access to modern energy services. Nuclear power and carbon capture and storage cannot be regarded as sustainable energy solutions due to their inherent risks and required long-term storage. The energy transition is driven by a growing energy demand, decreasing costs of renewables, modularity and scalability of renewable technologies, macroeconomic benefits of using renewables, investors’ risk awareness, renewable energy related attractive business opportunities, almost even distribution of solar and wind resources on the planet, growing awareness of the planet’s environmental status, environmental movements and tougher environmental legislation. Many of the investigated scenarios identified solar and wind power as a backbone for future energy systems. The scenarios, in which the solar and wind potentials were deployed in largest scale, met best the set out sustainability criteria. In future research, energy scenarios’ transparency can be improved by better disclosure on who has ordered the study, clarifying the funding, clearly referencing to used sources and indicating processed data, and by exploring how variations in cost assumptions and deployment of technologies influence on the outcomes of the study.
Resumo:
The purpose of this thesis was the screening of power to gas projects worldwide and reviewing the technologies used and applications for the end products. This study focuses solely on technical solutions and feasibility, economical profitability is excluded. With power grids having larger penetrations of intermittent sources such as solar and wind power, the demand and production cannot be balanced in conventional methods. Technologies for storing electric power in times of surplus production are needed, and the concept called power to gas is a solution for this problem. A total of 57 projects mostly located in Europe were reviewed by going through publications, presentations and project web pages. Hydrogen is the more popular end product over methane. Power to gas is a viable concept when power production from intermittent sources needs to be smoothed and time shifted, when carbon free fuels are produced for vehicles and when chemical industry needs carbon neutral raw materials.
Resumo:
Electrical road vehicles were common at the begin of the 20th century but internal combustion engines took a victory from electrical motors in road vehicles. The acknowledgement of the environment, and the price and the availability of the crude oil are reasons for the comeback of the electrical vehicles. Advancement in industrial technology and political atmosphere in EU as the directive 20--20--20, which consists of reducing fossil emission, increasing renewable energy and increasing the energy efficiency, have made the electrification popular again. In this thesis tests based on standard ISO 16750--2 electrical loads for electrical equipment in road vehicles are made for Visedo Oy's PowerMASTER M-frame power electronics device. This device is designed for mainly drive trains in mobile work machines and marine vessels but can be used in other application in its power range which also includes road vehicles. The functionality of the device is tested with preliminary tests which act as a framework for the tests based on standards.
Resumo:
Three-dimensional (3D) forming of paperboard and heat sealing of lidding films to trays manufactured by the press forming process are investigated in this thesis. The aim of the work was to investigate and recognize the factors affecting the quality of heat sealing and the leak resistance (tightness) of press-formed, polymer-coated paperboard trays heatsealed with a multi-layer polymer based lidding film. One target was to achieve a solution that can be used in food packaging using modified atmosphere packaging (MAP). The main challenge in acquiring adequate tightness properties for the use of MAP is creases in the sealing area of the paperboard trays which can act as capillary tubes and prevent leak-proof sealing. Several experiments were made to investigate the effect of different factors and process parameters in the forming and sealing processes. Also different methods of analysis, such as microscopic analysis and 3D-profilometry were used to investigate the structure of the creases in the sealing area, and to analyse the surface characteristics of the tray flange of the formed trays to define quality that can be sealed with satisfactory tightness for the use of MAP. The main factors and parameters that had an effect on the result of leak-proof sealing and must be adjusted accordingly were the tray geometry and dimensions, blank holding force in press forming, surface roughness of the sealing area, the geometry and depth of the creases, and the sealing pressure. The results show that the quality of press-formed, polymer-coated paperboard trays and multi-layer polymer lidding films can be satisfactory for the use of modified atmosphere packaging in food solutions. Suitable tools, materials, and process parameters have to be selected and used during the tray manufacturing process and lid sealing process, however. Utilizing these solutions and results makes it possible for a package that is made mostly from renewable and recyclable sources to be a considerable alternative for packages made completely from oil based polymers, and to achieve a greater market share for fibre-based solutions in food packaging using MAP.
Resumo:
In this thesis, I use "Fabricating Authenticity," a model developed in the Production of Culture Perspective, to explore the evolving criteria for judging what constitute "real" and authentic Niagara wines, along with the naturalization of these criteria, as the Canadian Niagara wine cluster has come under increasing stress from globalization. Authenticity has been identified as a hallmark of contemporary marketing and important to cultural industries, which can use it for creating meaningful differentiation; making it a renewable resource for securing consumers, increasing market value; and for relationships with key brokers. This is important as free trade and international treaties are making traditional protective barriers, like trade tariffs and markups, obsolete and as governments increasingly allocate industry support via promotion and marketing policies that are directly linked to objectives of city and regional development, which in turn carry real implications for what gets to be judged authentic and inauthentic local culture. This research uses a mixed methods research strategy, drawing upon ethnographic observation, marketing materials, newspaper reports, and secondary data to provide insight into the processes and conflicts over efforts to fabricate authenticity, comparing the periods before and after the passage of NAFT A to the present period. The Niagara wine cluster is a good case in point because it has little natural advantage nor was there a tradition of quality table wine making to facilitate the naturalization of authenticity. Geographic industrial clusters have been found particularly competitive in the global economy and the exploratory case study contributes to our understanding of the dynamic of '1abricating authenticity," building on various theoretical propositions to attempt to derive explanations of how global processes affect strategies to create "authenticity," how these strategies affect cultural homogeneity and heterogeneity at the local level, and how the concept of "cluster" contributes to the process of managing authenticity.
Resumo:
The Fur Council of Canada is an association that represents people working in all sectors of the Canadian fur trade, including trappers, processors, designers, manufacturers and retail furriers. The association aims to “promote, defend and enhance the professional, economic, social and moral interests of our members”. The Council supports fair trading practices for the benefit of producers and artisans; the responsible use of renewable resources; partnerships between the fur trade and other sectors of the Canadian and international fashion industry; and innovative use of fur by young designers.