942 resultados para Regional climate models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Future changes in population exposures to ambient air pollution are inherently linked with long-term trends in outdoor air quality, but also with changes in the building stock. Moreover, the burden of disease is further driven by the ageing of the European populations. This study aims to assess the impact of changes in climate, emissions, building stocks and population on air pollution related human health impacts across Europe in the future. Therefore an integrated assessment model combining atmospheric models and health impacts has been setup for projections of the future developments in air pollution related premature mortality. The focus is here on the regional scale impacts of exposure to surface ozone (O3), Secondary Inorganic Aerosols (SIA) and primary particulate matter (PPM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study helped to understand the trend in rainfall patterns at smaller spatial scales and the large regional differences in the variability of rainfall. The effect of land use and orography on the diurnal variability is also understood. But a better understanding on the long term variation in rainfall is possible by using a longer dataset,which may provide insight into the rainfall variation over country during the past century. The basic mechanism behind the interannual rainfall variability would be possible with numerical studies using coupled Ocean-Atmosphere models. The regional difference in the active-break conditions points to the significance of regional studies than considering India as a single unit. The underlying dynamics of diurnal variability need to be studied by making use of a high resolution model as the present study could not simulate the local onshore circulation. Also the land use modification in this study, selected a region, which is surrounded by crop land. This implies the high possibility for the conversion of the remaining region to agricultural land. Therefore the study is useful than considering idealized conditions, but the adverse effect of irrigated crop is more than non-irrigated crop. Therefore, such studies would help to understand the climate changes occurred in the recent period. The large accumulation of rainfall between 300-600 m height of western Ghats has been found but the reason behind this need to be studied, which is possible by utilizing datasets that would better represent the orography and landuse over the region in high resolution model. Similarly a detailed analysis is needed to clearly identify the causative relations of the predictors identified with the predictant and the physical reasons behind them. New approaches that include nonlinear relationships and dynamical variables from model simulations can be included in the existing statistical models to improve the skill of the models. Also the statistical models for the forecasts of monsoon have to be continually updated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The possibility to develop automatically running models which can capture some of the most important factors driving the urban climate would be very useful for many planning aspects. With the help of these modulated climate data, the creation of the typically used “Urban Climate Maps” (UCM) will be accelerated and facilitated. This work describes the development of a special ArcGIS software extension, along with two support databases to achieve this functionality. At the present time, lacking comparability between different UCMs and imprecise planning advices going along with the significant technical problems of manually creating conventional maps are central issues. Also inflexibility and static behaviour are reducing the maps’ practicality. From experi-ence, planning processes are formed more productively, namely to implant new planning parameters directly via the existing work surface to map the impact of the data change immediately, if pos-sible. In addition to the direct climate figures, information of other planning areas (like regional characteristics / developments etc.) have to be taken into account to create the UCM as well. Taking all these requirements into consideration, an automated calculation process of urban climate impact parameters will serve to increase the creation of homogenous UCMs efficiently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on the role of the European Union (EU) in the formation of India’s climate change policy; an increasingly high profile issue area. It is based on an extensive study of relevant literature, EU-India policy documents and the execution of thirteen semi-structured interviews with experts; many of whom have experienced EU-India cooperation on climate change first-hand. A three-point typology will be used to assess the extent of the EU’s leadership role, supporting role or equal partnership role in India, with several sub-roles within these categories. Further, for clarity and chronology purposes, three time periods will be distinguished to assess how India’s climate policy has evolved over time, alongside the EU’s role within that. The findings of the paper confirm that the EU has demonstrated signs of all three roles to some degree, although the EU-India relationship in climate policy is increasingly an equal partnership. It offers explanations for previous shortcomings in EU-India climate policy as well as policy recommendations to help ensure more effective cooperation and implementation of policies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976-2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang'a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha(-1)), farmyard manure (FYM - 5 and 10 t ha(-1)) and plant residue treatments, in a variety of combinations. The Machang'a experiment involved a fertiliser (51 kg N ha(-1)) and a FYM (0, 5 and 10 t ha(-1)) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang'a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang'a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C Predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We separate and quantify the sources of uncertainty in projections of regional (*2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chapter provides an overview of major climate change impacts, at the regional scale.