955 resultados para Redox reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Back-scattered imaging, X-ray element mapping and electron microprobe analyzer (EMPA) chemical dating reveal complex compositional and age zoning in monazite crystals from different layers and textural positions in a garnet-bearing migmatite in SE Brazil. Y-rich (variable Y(2)O(3), averaging 2.5 wt.%) relict cores are preserved in mesosome and melanosome monazite, and correspond to 793 +/- 6 Ma inherited crystals possibly generated in a previous metamorphic event. These cores are overgrown and widely replaced by two generations of monazite, which are present in all migmatite layers. The first, also Y-rich (average 2.5 wt.% Y(2)O(3)), was produced at similar to 635 Ma during prograde metamorphism under subsolidus conditions, while the second has an Y-poor (<1.5 wt.% Y(2)O(3)), low Th/U signature, and precipitated from low Y and HREE anatectic melts produced by reactions in which garnet was inert. Quartz-rich trondhjemitic leucosome represents lower temperature melt (bearing some subsolidus quartz and garnet with included monazite) formed at temperatures below muscovite breakdown; its Y-poor monazite indicates an age of 617 +/- 6 Ma. Granitic leucosomes formed close to peak metamorphic conditions (T>750 degrees C) above muscovite breakdown have their slightly younger character confirmed by a 609 +/- 7 Ma low-Y monazite age. A similar 606 +/- 5 Ma age was obtained for low-Y monazite rims and domains in mesosome and melanosome, and reflects the time of monazite saturation in interstitial granitic melt that was trapped in these layers. Our results confirm that inherited monazite crystals can be preserved during partial melting at temperatures above muscovite breakdown. Moreover, careful textural control aided by X-ray chemical mapping may allow monazite generated at different stages in a similar to 25 Myr prograde metamorphic path to be identified and dated using an electron microprobe. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genital mycoplasmas are natural inhabitants of the male urethra and are potentially pathogenic species playing an aetiological role in both genital infections and male infertility. This study aims to determine the presence of Mycoplasma genitalium DNA in urine samples of HIV-1-infected men in Sao Paulo city. Realtime polymerase chain reaction (PCR) was performed using the primers My-ins and Mgso-2 and the Taqman probe Mgen-P1 as described previously. A total of 223 HIV-1-infected men were tested with a mean age of 44 years. Thirteen (5.8%) presented M. genitalium in urine and the co-infection was more common among homosexual men (76.9% versus 51.9%, P < 0.26). In conclusion, realtime PCR was a useful and rapid method for detecting M. genitalium DNA in urine samples. Further studies should be conducted to assess the clinical significance of these results on HIV transmission and its impact on HIV viral load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decomposition of organic hydroperoxides into peroxyl radicals is a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. This study shows that 5-(hydroperoxymethyl)uracil (5-HPMU), a thymine hydroperoxide within DNA, reacts with metal ions or HOCl, generating O(2) ((1)Delta(g)). Spectroscopic evidence for generation of O(2) ((1)Delta(g)) was obtained by measuring (i) the bimolecular decay, (ii) the monomolecular decay, and (iii) the observation of D(2)O enhancement of O(2) ((1)Delta(g)) production and the quenching effect of NaN(3). Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by the direct characterization of the near-infrared light emission. For the sake of comparison, O(2) ((1)Delta(g)) derived from the H(2)O(2)/HOCl system and from the thermolysis of the N,N`-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide endoperoxide was also monitored. More evidence of O(2) ((1)Delta(g)) generation was obtained by chemical trapping of O(2) ((1)Delta(g)) with anthracene-9,10-divinylsulfonate (AVS) and detection of the specific AVS endoperoxide by HPLC/MS/MS. The detection by HPLC/MS of 5-(hydroxymethyl)uracil and 5-formyluracil, two thymine oxidation products generated from the reaction of 5-HPMU and Ce(4+) ions, supports the Russell mechanism. These photoemission properties and chemical trapping clearly demonstrate that the decomposition of 5-HPMU generates O(2) ((1)Delta(g)) by the Russell mechanism and point to the involvement of O(2) ((1)Delta(g)) in thymidine hydroperoxide cytotoxicity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(center dot-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetaldehyde is an environmentally widespread genotoxic aldehyde present in tobacco smoke, vehicle exhaust and several food products. Endogenously, acetaldehyde is produced by the metabolic oxidation of ethanol by hepatic NAD-dependent alcohol dehydrogenase and during threonine catabolism. The formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2`-deoxyguanosine in DNA to form primarily N(2)-ethylidene-2`-deoxyguanosine. The subsequent reaction of N(2)-ethylidenedGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo), an adduct also found as a product of the crotonaldehyde reaction with dGuo. However, adducts resulting from the reaction of more than one molecule of acetaldehyde in vivo are still controversial. In this study, the unequivocal formation of 1,N(2)-propanodGuo by acetaldehyde was assessed in human cells via treatment with [(13)C(2)]-acetaldehyde. Detection of labeled 1,N(2)-propanodGuo was performed by HPLC/MS/MS. Upon acetaldehyde exposure (703 mu M), increased levels of both 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo), which is produced from alpha,beta-unsaturated aldehydes formed during the lipid peroxidation process, and 1,N(2)-propanodGuo were observed. The unequivocal formation of 1,N(2)-propanodGuo in cells exposed to this aldehyde can be used to elucidate the mechanisms associated with acetaldehyde exposure and cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singlet oxygen ((1)O(2)) generation in the reaction centers (RCs) of Rhodobacter sphaeroides wild type was characterized by luminescent emission in the near infrared region (time resolved transients and emission spectra) and quantified to have quantum yield of 0.03 +/- 0.005. (1)O(2) emission was measured as a function of temperature, ascorbate, urea and potassium ferricyanide concentrations and as a function of incubation time in H(2)O: D(2)O mixtures. (1)O(2) was shown to be affected by the RC dynamics and to originate from the reaction of molecular oxygen with two sources of triplets: photoactive dimer formed by singlet-triplet mixing and bacteriopheophytin formed by direct photoexcitation and intersystem crossing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diacetyl, like other alpha-dicarbonyl compounds, is reportedly cytotoxic and genotoxic. A food and cigarette contaminant, it is related with alcohol hepatotoxicity and lung disease. Peroxynitrite is a potent oxidant formed in vivo by the diffusion-controlled reaction of the superoxide radical anion with nitric oxide, which is able to form adducts with carbon dioxide and carbonyl compounds. Here, we investigate the nucleophilic addition of peroxynitrite to diacetyl forming acetyl radicals, whose reaction with molecular oxygen leads to acetate. Peroxynitrite is shown to react with diacetyl in phosphate buffer (bell-shaped pH profile with maximum at 7.2) at a very high rate constant (k(2) = 1.0 X 10(4) M-1 s(-1)) when compared with monocarbonyl substrates (k(2) < 10(3) M-1 s(-1)). Phosphate ions (100-500 MM) do not affect the rate of spontaneous peroxynitrite decay, but the H2PO4- anion catalyzes the nucleophilic addition of the peroxynitrite anion to diacetyl. The intermediacy of acetyl radicals is suggested by a three-line spectrum (a(N) = a(H) = 0.83 mT) obtained by EPR spin trapping of the reaction mixture with 2-methyl-2-nitrosopropane. The peroxynitrite reaction is accompanied by concentration-dependent oxygen uptake. Stoichiometric amounts of acetate from millimolar amounts of peroxynitrite and diacetyl were obtained under nonlimiting conditions of dissolved oxygen. In the presence of either L-histidine or 2`-deoxyguanosine, the peroxynitrite/diacetyl system afforded the corresponding acetylated molecules identified by HPLC-MS"". These studies provide evidence that the peroxynitrite/diacetyl reaction yields acetyl radicals and raise the hypothesis that protein and DNA nonenzymatic acetylation may occur in cells and be implicated in aging and metabolic disorders in which oxygen and nitrogen reactive species are putatively involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different cerium citrate-based precursors were used for synthesizing CeO(2) through thermal treatment. Three morphological types of CeO(2) were obtained. Characterization of these oxides was carried out by XRD patterns, SEM microscopy, N(2) adsorption isotherms, Raman spectroscopy, zeta potential, and UV/Vis luminescence. Ozonation of phenol catalyzed by CeO(2) was studied as a representative reaction of environmental interest. The differences on the catalytic activity showed by these three oxides could be correlated to amounts of Ce(3+) on CeO(2) surface and, consequently, to the demand for oxygen needed to burn each precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exocyclic DNA adducts produced by exogenous and endogenous compounds are emerging as potential tools to study a variety of human diseases and air pollution exposure. A highly sensitive method involving online reverse-phase high performance liquid chromatography with electrospray tandem mass spectrometry detection in the multiple reaction monitoring mode and employing stable isotope-labeled internal standards was developed for the simultaneous quantification of 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo) and 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo) in DNA. This methodology permits direct online quantification of 2`-deoxyguanosine and ca. 500 amol of adducts in 100 mu g of hydrolyzed DNA M the same analysis. Using the newly developed technique, accurate determinations of 1,N(2)-etheno-2`-deoxyguanosine and 1,N2-propano-2`-deoxyguanosine levels in DNA extracts of human cultured cells (4.01 +/- 0.32 1,N(2)-epsilon dGuo/10(8) dGuo and 3.43 +/- 0.33 1,N(2)-propanodGuo/10(8) dGuo) and rat tissue (liver, 2.47 +/- 0.61 1,N(2)-epsilon dGuo/10(8) dGuo and 4.61 +/- 0.69 1,N(2)-propanodGuo/108 dGuo; brain, 2.96 +/- 1.43,N(2)-epsilon dGuo/10(8) dGuo and 5.66 +/- 3.70 1,N(2)-propanoclGuo/10(8) dGuo; and lung, 0,87 +/- 0.34 1,N(2)-edGuo/ 10(8) dGuo and 2.25 +/- 1.72 1,N(2)-propanodGuo/10(8) dGuo) were performed. The method described herein can be used to study the biological significance of exocyclic DNA adducts through the quantification of different adducts in humans and experimental an with pathological conditions and after air pollution exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we report on the synthesis of photosensitizing nanoparticles in which the generation of different oxidizing species, i.e., singlet oxygen ((1)O(2)) or radicals, was modulated. Sol gel and surface chemistry were used to obtain nanoparticles with specific ratios of dimer to monomer species of phenothiazine photosensitizers (PSs). Due to competition between the reactions involving electron transfer within dimer species and energy transfer from monomer triplets to oxygen, the efficiency of (1)O(2) generation could be controlled. Nanoparticles with an excess of dimer have an (1)O(2) generation efficiency (S(Delta)) of 0.01 while those without dimer have a S, value of 0.4. Furthermore, we demonstrate that the PS properties of the nanoparticles are not subjected to interference from the external medium as is commonly the case for free PSs, i.e., PS ground and triplet states are not reduced by NADH and ascorbate, respectively, and singlet excited states are less suppressed by bromide. The modulated (1)O(2) generation and the PS protection from external interferences make this nanoparticle platform a promising tool to aid in performing mechanistic studies in biological systems. Also, it offers potential application in technological areas in which photo-induced processes take place.