999 resultados para Redes epistolares
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
Considerando a potencialidade apresentada pelas tecnologias de informação e comunicação na atualidade este estudo aponta as formas pelas quais grupos sociais mobilizados em torno de uma vinculação étnica podem se servir do aparato da Internet, em especial do World Wide Web, para divulgar aspectos de sua cultura e modo de vida. Trata-se de grupos dedicados ao ensino, transmissão, preservação e disseminação da tradição gaúcha vinculados aos Centros de Tradições Gaúchas (CTG). Especificamente, este artigo apresenta como os tradicionalistas gaúchos estabelecem suas redes sociais na Internet, constituindo comunidades virtuais em torno do tema cultura e tradição gaúcha, fazendo uso dos serviços da Web 2.0. Abordam-se neste estudo experiências que indicam que o terreno virtual é fértil e possível de transformar e revolucionar o campo das tradições, sua preservação, disseminação e (re)invenção. No contexto de modernidade tardia esse recurso não pode ser descartado. Independente da análise se situar no campo econômico, político ou cultural, entre tantos outros, o fato é que a Internet se constitui num meio eficaz e abrangente de transmitir, ensinar e preservar conteúdos de todos os tipos.
Resumo:
Investigaremos, a partir da perspectiva da Ciência Cognitiva, a noção de representação mental, no domínio da percepção visual humana. Ênfase é dada ao paradigma Conexionista, ou de Redes Neurais, de acordo com o qual tais representações mentais são descritas como estruturas emergentes da interação entre sistemas de processamento de informação que se auto-organizam - tais como o cérebro - e a luz estruturada no meio ambiente. Sugerimos que essa noção de representação mental indica uma solução para uma antiga polêmica, entre Representacionalistas e Eliminativistas, acerca da existência de representações mentais no sistema perceptual humano.
Resumo:
A maioria da soluções apresentadas como candidatas à implementação de serviços de distribuição de áudio e vídeo, têm sido projetadas levando-se em consideração determinadas condições de infra-estrutura, formato dos fluxos de vídeo a serem transmitidos, ou ainda os tipos de clientes que serão atendidos pelo serviço. Aplicações que utilizam serviços de distribuição de vídeo normalmente precisam lidar com grandes oscilações na demanda pelo serviço devido a entrada e saída de usuários do serviço. Com exemplo, basta observar a enorme variação nos níveis de audiência de programas de televisão. Este comportamento coloca um importante requisito para esta classe de sistemas distribuídos: a capacidade de reconfiguração como conseqüência de variações na demanda. Esta dissertação apresenta um estudo que envolveu o uso de agentes móveis para implementar os servidores de um serviço de distribuição de vídeo denominada DynaVideo. Uma das principais características deste serviço é a capacidade de ajustar sua configuração em conseqüência de variações na demanda. Como os servidores DynaVideo podem replicar-se e são implementados como código móvel, seu posicionamento pode ser otimizado para atender uma dada demanda e, como conseqüência, a configuração do serviço pode ser ajustada para minimizar o consumo de recursos necessários para distribuir vídeo para seus usuários. A principal contribuição desta dissertação foi provar a viabilidade do conceito de servidores implementados como agentes móveis Java baseados no ambiente de desenvolvimento de software Aglet.
Resumo:
The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform
Resumo:
The distribution of petroleum products through pipeline networks is an important problem that arises in production planning of refineries. It consists in determining what will be done in each production stage given a time horizon, concerning the distribution of products from source nodes to demand nodes, passing through intermediate nodes. Constraints concerning storage limits, delivering time, sources availability, limits on sending or receiving, among others, have to be satisfied. This problem can be viewed as a biobjective problem that aims at minimizing the time needed to for transporting the set of packages through the network and the successive transmission of different products in the same pipe is called fragmentation. This work are developed three algorithms that are applied to this problem: the first algorithm is discrete and is based on Particle Swarm Optimization (PSO), with local search procedures and path-relinking proposed as velocity operators, the second and the third algorithms deal of two versions based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed algorithms are compared to other approaches for the same problem, in terms of the solution quality and computational time spent, so that the efficiency of the developed methods can be evaluated
Resumo:
Research on Wireless Sensor Networks (WSN) has evolved, with potential applications in several domains. However, the building of WSN applications is hampered by the need of programming in low-level abstractions provided by sensor OS and of specific knowledge about each application domain and each sensor platform. We propose a MDA approach do develop WSN applications. This approach allows domain experts to directly contribute in the developing of applications without needing low level knowledge on WSN platforms and, at the same time, it allows network experts to program WSN nodes to met application requirements without specific knowledge on the application domain. Our approach also promotes the reuse of the developed software artifacts, allowing an application model to be reused across different sensor platforms and a platform model to be reused for different applications
Resumo:
On the last years, several middleware platforms for Wireless Sensor Networks (WSN) were proposed. Most of these platforms does not consider issues of how integrate components from generic middleware architectures. Many requirements need to be considered in a middleware design for WSN and the design, in this case, it is possibility to modify the source code of the middleware without changing the external behavior of the middleware. Thus, it is desired that there is a middleware generic architecture that is able to offer an optimal configuration according to the requirements of the application. The adoption of middleware based in component model consists of a promising approach because it allows a better abstraction, low coupling, modularization and management features built-in middleware. Another problem present in current middleware consists of treatment of interoperability with external networks to sensor networks, such as Web. Most current middleware lacks the functionality to access the data provided by the WSN via the World Wide Web in order to treat these data as Web resources, and they can be accessed through protocols already adopted the World Wide Web. Thus, this work presents the Midgard, a component-based middleware specifically designed for WSNs, which adopts the architectural patterns microkernel and REST. The microkernel architectural complements the component model, since microkernel can be understood as a component that encapsulates the core system and it is responsible for initializing the core services only when needed, as well as remove them when are no more needed. Already REST defines a standardized way of communication between different applications based on standards adopted by the Web and enables him to treat WSN data as web resources, allowing them to be accessed through protocol already adopted in the World Wide Web. The main goals of Midgard are: (i) to provide easy Web access to data generated by WSN, exposing such data as Web resources, following the principles of Web of Things paradigm and (ii) to provide WSN application developer with capabilities to instantiate only specific services required by the application, thus generating a customized middleware and saving node resources. The Midgard allows use the WSN as Web resources and still provide a cohesive and weakly coupled software architecture, addressing interoperability and customization. In addition, Midgard provides two services needed for most WSN applications: (i) configuration and (ii) inspection and adaptation services. New services can be implemented by others and easily incorporated into the middleware, because of its flexible and extensible architecture. According to the assessment, the Midgard provides interoperability between the WSN and external networks, such as web, as well as between different applications within a single WSN. In addition, we assessed the memory consumption, the application image size, the size of messages exchanged in the network, and response time, overhead and scalability on Midgard. During the evaluation, the Midgard proved satisfies their goals and shown to be scalable without consuming resources prohibitively
Resumo:
The increasing complexity of integrated circuits has boosted the development of communications architectures like Networks-on-Chip (NoCs), as an architecture; alternative for interconnection of Systems-on-Chip (SoC). Networks-on-Chip complain for component reuse, parallelism and scalability, enhancing reusability in projects of dedicated applications. In the literature, lots of proposals have been made, suggesting different configurations for networks-on-chip architectures. Among all networks-on-chip considered, the architecture of IPNoSys is a non conventional one, since it allows the execution of operations, while the communication process is performed. This study aims to evaluate the execution of data-flow based applications on IPNoSys, focusing on their adaptation against the design constraints. Data-flow based applications are characterized by the flowing of continuous stream of data, on which operations are executed. We expect that these type of applications can be improved when running on IPNoSys, because they have a programming model similar to the execution model of this network. By observing the behavior of these applications when running on IPNoSys, were performed changes in the execution model of the network IPNoSys, allowing the implementation of an instruction level parallelism. For these purposes, analysis of the implementations of dataflow applications were performed and compared
Resumo:
The field of Wireless Sensor and Actuator Networks (WSAN) is fast increasing and has attracted the interest of both the research community and the industry because of several factors, such as the applicability of such networks in different application domains (aviation, civil engineering, medicine, and others). Moreover, advances in wireless communication and the reduction of hardware components size also contributed for a fast spread of these networks. However, there are still several challenges and open issues that need to be tackled in order to achieve the full potential of WSAN usage. The development of WSAN systems is one of the most relevant of these challenges considering the number of variables involved in this process. Currently, a broad range of WSAN platforms and low level programming languages are available to build WSAN systems. Thus, developers need to deal with details of different sensor platforms and low-level programming abstractions of sensor operational systems on one hand, and they also need to have specific (high level) knowledge about the distinct application domains, on the other hand. Therefore, in order to decouple the handling of these two different levels of knowledge, making easier the development process of WSAN systems, we propose LWiSSy (Domain Language for Wireless Sensor and Actuator Networks Systems), a domain specific language (DSL) for WSAN. The use of DSLs raises the abstraction level during the programming of systems and modularizes the system building in several steps. Thus, LWiSSy allows the domain experts to directly contribute in the development of WSANs without having knowledge on low level sensor platforms, and network experts to program sensor nodes to meet application requirements without having specific knowledge on the application domain. Additionally, LWiSSy enables the system decomposition in different levels of abstraction according to structural and behavioral features and granularities (network, node group and single node level programming)
Resumo:
A Wireless Mesh Network (WMN - Wireless Mesh Network) IEEE 802.11s standard to become operational it is necessary to configure the parameters that meet the demands of its users, as regards, for example, the frequency channels, the power antennas, IPs addresses, meshID, topology, among others. This configuration can be done via a CLI (Command - Line Interface) or a remote interface provided by the equipment manufacturer, both are not standardized and homogeneous, like black boxes for the developers, a factor that hinders its operation and standardization. The WMN, as a new standard, is still in the testing phase, and tests are necessary to evaluate the performance of Path Discovery Protocol, as in this case of HWMP (Hybrid Wireless Mesh Protocol), which still has many shortcomings. The configuration and test creation in a WMN are not trivial and require a large workload. For these reasons this work presents the AIGA, a Management Integrated Environment for WMN IEEE 802.11s, which aims to manage and perform testbeds for analyzes of new Path Discovery Protocols in a WMN
Resumo:
The relationship between mayors and patients Who use a Casa de Apoio in Natal, RN, shows us some traditional political features anda t the same time happens in na urban and modern context, regulated by a formal institution, the State. The Oestana, as is named this Casa de Apoio, offers daily that are paid by some City Halls located in the West of Rio Grande do Norte where people go away to capital from which they have medical and hospital care. This assistance includes paid services like accommodation, food, transportation, etc., as well as services that aren´t paid as information, support and hospital material, for example. When the patients access these service, they will gain a debt with a services provider (the mayor) which its eventually paid with the vote in the municipal elections. The goal is to understand the social, the political, the symbolic and mainly the life meaning of this relationship. Our research was developed by interviews with Oestanas users and regular visits to this house that showed a political bond regulated by moral and subjection, but is reconfigured by new social categories as the affection and the logical networks.
Resumo:
The fundamental senses of the human body are: vision, hearing, touch, taste and smell. These senses are the functions that provide our relationship with the environment. The vision serves as a sensory receptor responsible for obtaining information from the outside world that will be sent to the brain. The gaze reflects its attention, intention and interest. Therefore, the estimation of gaze direction, using computer tools, provides a promising alternative to improve the capacity of human-computer interaction, mainly with respect to those people who suffer from motor deficiencies. Thus, the objective of this work is to present a non-intrusive system that basically uses a personal computer and a low cost webcam, combined with the use of digital image processing techniques, Wavelets transforms and pattern recognition, such as artificial neural network models, resulting in a complete system that performs since the image acquisition (including face detection and eye tracking) to the estimation of gaze direction. The obtained results show the feasibility of the proposed system, as well as several feature advantages.
Resumo:
Este trabalho apresenta uma técnica de verificação formal de Sistemas de Raciocínio Procedural, PRS (Procedural Reasoning System), uma linguagem de programação que utiliza a abordagem do raciocínio procedural. Esta técnica baseia-se na utilização de regras de conversão entre programas PRS e Redes de Petri Coloridas (RPC). Para isso, são apresentadas regras de conversão de um sub-conjunto bem expressivo da maioria da sintaxe utilizada na linguagem PRS para RPC. A fim de proceder fia verificação formal do programa PRS especificado, uma vez que se disponha da rede de Petri equivalente ao programa PRS, utilizamos o formalismo das RPCs (verificação das propriedades estruturais e comportamentais) para analisarmos formalmente o programa PRS equivalente. Utilizamos uma ferramenta computacional disponível para desenhar, simular e analisar as redes de Petri coloridas geradas. Uma vez que disponhamos das regras de conversão PRS-RPC, podemos ser levados a querer fazer esta conversão de maneira estritamente manual. No entanto, a probabilidade de introdução de erros na conversão é grande, fazendo com que o esforço necessário para garantirmos a corretude da conversão manual seja da mesma ordem de grandeza que a eliminação de eventuais erros diretamente no programa PRS original. Assim, a conversão automatizada é de suma importância para evitar que a conversão manual nos leve a erros indesejáveis, podendo invalidar todo o processo de conversão. A principal contribuição deste trabalho de pesquisa diz respeito ao desenvolvimento de uma técnica de verificação formal automatizada que consiste basicamente em duas etapas distintas, embora inter-relacionadas. A primeira fase diz respeito fias regras de conversão de PRS para RPC. A segunda fase é concernente ao desenvolvimento de um conversor para fazer a transformação de maneira automatizada dos programas PRS para as RPCs. A conversão automática é possível, porque todas as regras de conversão apresentadas seguem leis de formação genéricas, passíveis de serem incluídas em algoritmos
Resumo:
In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient