955 resultados para Reconfigurations of native North America : an anthology of new perspectives
Resumo:
There is an urgent need to improve the performance of urine cytology for the diagnosis of bladder cancer. In preliminary studies, telomerase activity evaluated by telomeric repeat amplification protocol (TRAP) assay and chromosomal aneuploidy detected by fluorescence in situ hybridization (FISH) in the diagnosis of bladder cancer have produced important results. Urine cell-free (UCF) DNA has also been proposed as a potential marker for early bladder cancer diagnosis. In the first study the diagnostic performance of TRAP assay and FISH analysis was assessed, while the second study evaluated the potential role of UCF DNA integrity in early bladder cancer diagnosis. In the first cross-sectional study, 289 consecutive patients who presented with urinary symptoms underwent cystoscopy and cytology evaluation. In the second study, UCF DNA was isolated from 51 bladder cancer patients, 46 symptomatic patients, and 32 healthy volunteers. c-Myc, BCAS1 and HER2 gene sequences longer than 250 bp were quantified by real time PCR to verify UCF DNA integrity. In the first study, sensitivity and specificity were 0.39 and 0.83, respectively, for cytology; 0.66 and 0.72 for TRAP; 0.78 and 0.60 for the cytology and TRAP combination; 0.78 and 0.78 for the cytology, TRAP and FISH combination; and 0.65 and 0.93 for the TRAP and FISH combination. In the second study, at the best cutoff of 0.1 ng/µl, UCF DNA integrity analysis showed a sensitivity of 0.73 and a specificity of 0.84 in healthy individuals and 0.83 in symptomatic patients. The preliminary results suggest that these biomarkers could potentially be used for the early diagnosis of bladder cancer, especially in high-risk populations (e.g, symptomatic individuals exposed to occupational risk) who may benefit from the use of noninvasive diagnostic tests in terms of cost-benefit.
Resumo:
Specific language impairment (SLI) is a complex neurodevelopmental disorder defined as an unexpected failure to develop normal language abilities for no obvious reason. Copy number variants (CNVs) are an important source of variation in the susceptibility to neuropsychiatric disorders. Therefore, a CNV study within SLI families was performed to investigate the role of structural variants in SLI. Among the identified CNVs, we focused on CNVs on chromosome 15q11-q13, recurrently observed in neuropsychiatric conditions, and a homozygous exonic microdeletion in ZNF277. Since this microdeletion falls within the AUTS1 locus, a region linked to autism spectrum disorders (ASD), we investigated a potential role of ZNF277 in SLI and ASD. Frequency data and expression analysis of the ZNF277 microdeletion suggested that this variant may contribute to the risk of language impairments in a complex manner, that is independent of the autism risk previously described in this region. Moreover, we identified an affected individual with a dihydropyrimidine dehydrogenase (DPD) deficiency, caused by compound heterozygosity of two deleterious variants in the gene DPYD. Since DPYD represents a good candidate gene for both SLI and ASD, we investigated its involvement in the susceptibility to these two disorders, focusing on the splicing variant rs3918290, the most common mutation in the DPD deficiency. We observed a higher frequency of rs3918290 in SLI cases (1.2%), compared to controls (~0.6%), while no difference was observed in a large ASD cohort. DPYD mutation screening in 4 SLI and 7 ASD families carrying the splicing variant identified six known missense changes and a novel variant in the promoter region. These data suggest that the combined effect of the mutations identified in affected individuals may lead to an altered DPD activity and that rare variants in DPYD might contribute to a minority of cases, in conjunction with other genetic or non-genetic factors.
Resumo:
This thesis describes the developments of new models and toolkits for the orbit determination codes to support and improve the precise radio tracking experiments of the Cassini-Huygens mission, an interplanetary mission to study the Saturn system. The core of the orbit determination process is the comparison between observed observables and computed observables. Disturbances in either the observed or computed observables degrades the orbit determination process. Chapter 2 describes a detailed study of the numerical errors in the Doppler observables computed by NASA's ODP and MONTE, and ESA's AMFIN. A mathematical model of the numerical noise was developed and successfully validated analyzing against the Doppler observables computed by the ODP and MONTE, with typical relative errors smaller than 10%. The numerical noise proved to be, in general, an important source of noise in the orbit determination process and, in some conditions, it may becomes the dominant noise source. Three different approaches to reduce the numerical noise were proposed. Chapter 3 describes the development of the multiarc library, which allows to perform a multi-arc orbit determination with MONTE. The library was developed during the analysis of the Cassini radio science gravity experiments of the Saturn's satellite Rhea. Chapter 4 presents the estimation of the Rhea's gravity field obtained from a joint multi-arc analysis of Cassini R1 and R4 fly-bys, describing in details the spacecraft dynamical model used, the data selection and calibration procedure, and the analysis method followed. In particular, the approach of estimating the full unconstrained quadrupole gravity field was followed, obtaining a solution statistically not compatible with the condition of hydrostatic equilibrium. The solution proved to be stable and reliable. The normalized moment of inertia is in the range 0.37-0.4 indicating that Rhea's may be almost homogeneous, or at least characterized by a small degree of differentiation.
Resumo:
Organizational and institutional scholars have advocated the need to examine how processes originating at an individual level can change organizations or even create new organizational arrangements able to affect institutional dynamics (Chreim et al., 2007; Powell & Colyvas, 2008; Smets et al., 2012). Conversely, research on identity work has mainly investigated the different ways individuals can modify the boundaries of their work in actual occupations, thus paying particular attention to ‘internal’ self-crafting (e.g. Wrzesniewski & Dutton, 2001). Drawing from literatures on possible and alternative self and on positive organizational scholarship (e.g., Obodaru, 2012; Roberts & Dutton, 2009), my argument is that individuals’ identity work can go well beyond the boundaries of internal self-crafting to the creation of new organizational arrangements. In this contribution I analyze, through multiple case studies, healthcare professionals who spontaneously participated in the creation of new organizational arrangements, namely health structures called Community Hospitals. The contribution develops this form of identity work by building a grounded model. My findings disclose the process that leads from the search for the enactment of different self-concepts to positive identities, through the creation of a new organizational arrangement. I contend that this is a particularly complex form of collective identity work because it requires, to be successful, concerted actions of several internal, external and institutional actors, and it also requires balanced tensions that – at the same time - enable individuals’ aspirations and organizational equilibrium. I name this process organizational collective crafting. Moreover I inquire the role of context in supporting the triggering power of those unrealized selves. I contribute to the comprehension of the consequences of self-comparisons, organizational identity variance, and positive identity. The study bears important insights on how identity work originating from individuals can influence organizational outcomes and larger social systems.
Resumo:
Molecular recognition and self-assembly represent fundamental issues for the construction of supramolecular systems, structures in which the components are held together through non-covalent interactions. The study of host-guest complexes and mechanical interlocked molecules, important examples in this field, is necessary in order to characterize self-assembly processes, achieve more control over the molecular organization and develop sophisticated structures by using properly designed building blocks. The introduction of paramagnetic species, or spin labelling, represents an attractive opportunity that allows their detection and characterization by the Electron Spin Resonance spectroscopy, a valuable technique that provides additional information to those obtained by traditional methods. In this Thesis, recent progresses in the design and the synthesis of new paramagnetic host-guest complexes and rotaxanes characterized by the presence of nitroxide radicals and their investigation by ESR spectroscopy are reported. In Chapter 1 a brief overview of the principal concepts of supramolecular chemistry, the spin labelling approach and the development of ESR methods applied to paramagnetic systems are described. Chapter 2 and 3 are focused on the introduction of radicals in macrocycles as Cucurbiturils and Pillar[n]arenes, due to the interesting binding properties and the potential employment in rotaxanes, in order to investigate their structures and recognition properties. Chapter 4 deals with one of the most studied mechanical interlocked molecules, the bistable [2]rotaxane reported by Stoddart and Heath based on the ciclobis (paraquat-p-phenylene) CBPQT4+, that represents a well known example of molecular switch driven by external stimuli. The spin labelling of analogous architectures allows the monitoring by ESR spectroscopy of the switch mechanism involving the ring compound by tuning the spin exchange interaction. Finally, Chapter 5 contains the experimental procedures used for the synthesis of some of the compounds described in Chapter 2-4.
Resumo:
The increase in aquaculture operations worldwide has provided new opportunities for the transmission of aquatic viruses. The occurrence of viral diseases remains a significant limiting factor in aquaculture production and for the sustainability. The ability to identify quickly the presence/absence of a pathogenic organism in fish would have significant advantages for the aquaculture systems. Several molecular methods have found successful application in fish pathology both for confirmatory diagnosis of overt diseases and for detection of asymptomatic infections. However, a lot of different variants occur among fish host species and virus strains and consequently specific methods need to be developed and optimized for each pathogen and often also for each host species. The first chapter of this PhD thesis presents a complete description of the major viruses that infect fish and provides a relevant information regarding the most common methods and emerging technologies for the molecular diagnosis of viral diseases of fish. The development and application of a real time PCR assay for the detection and quantification of lymphocystivirus was described in the second chapter. It showed to be highly sensitive, specific, reproducible and versatile for the detection and quantitation of lymphocystivirus. The use of this technique can find multiple application such as asymptomatic carrier detection or pathogenesis studies of different LCDV strains. The third chapter, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and sleeping disease (SD) in a single assay. This method was able to efficiently detect the viral RNA in tissue samples, showing the presence of single infections and co-infections in rainbow trout samples. The mRT-PCR method was revealed to be an accurate and fast method to support traditional diagnostic techniques in the diagnosis of major viral diseases of rainbow trout.
Resumo:
Xanthene dyes, including fluorescein, are a well-known class of fluorescent dyes, which have widespread applications in natural sciences. The synthesis of xanthene derivatives via acid catalyzed condensation of substituted phenols with phthalic anhydride, to afford the asymmetric derivatives, is well established. The high temperature, harsh reaction conditions and often low yields make this method less convenient. The synthesis of xanthene dyes by direct modification of the fluorophore moiety is a great option to circumvent the above mentioned drawbacks. rnOur new synthetic strategy for the preparation of novel asymmetric xanthene dyes via direct conversion of hydroxyl groups on 3'- and 6'-positions into leaving groups by mesylation is reported. It was discovered that 3',6'-di-mesylated fluorescein underwent a nucleophilic aromatic substitution with sulfur nucleophiles and afforded new asymmetric xanthene sulfides. rnThe impact of substituents possessing an electron-withdrawing character such as chlorines and bromines was investigated with the aim to improve the aromatic substitution on the electron-rich fluorescein structure. It was observed that the incorporation of these groups did not considerably affect the substitution reaction and the yields were comparable with the unsubstituted fluorescein. rnThis strategy provided novel fluorescent probes with the linker suitable to further modifications. The modifications of the linker delivered fluorescein derivatives that could be used as fluorescent labels in peptides, oligonucleotides and for cell imaging. rnThe hydroxyl group on the linker was modified to achieve potent bioconjugate functionality such as azide. The new fluorescent azides were obtained in a 4-step synthesis, namely 2-(6-(2-azidoethylthio)-3-oxo-3H-xanthen-9-yl)benzoic acid with an overall yield of 13%, its 2',7'-dichloro derivative with an overall yield of 10% and its 2',4',5'-tribromo derivative with an overall yield of 1%, respectively. rnAn asymmetric xanthene sulfide with an amino functionality placed on the aliphatic linker, namely 2-(6-((2-aminoethyl)thio)-3-oxo-3H-xanthen-9-yl)benzoic acid, was obtained in a 3-step synthesis with an overall yield of 33%. rnThe impact of the substitution with sulfur nucleophiles on the 6'-position of the xanthene moiety on its fluorescent characteristics was investigated. In comparison with fluorescein new asymmetric xanthene sulfides afforded lower extinction coefficients and fluorescent quantum yields. On the other hand, the substitution with a sulfur nucleophile significantly improved the photostability of xanthene dyes. It was shown that after 10 hours of continuous excitation, the asymmetric sulfur-containing xanthene fluorophores exhibited 58-94% of their initial fluorescent intensities. This observation suggested that the novel dyes were 1-2 orders of magnitude more stable than fluorescein. rnThe azido-modified xanthenes were “clicked” via Cu(I)-catalyzed azide-alkyne cycloaddition with an oligonucleotide, which contained the terminal alkyne residue. rn
Resumo:
New biologically active β-lactams were designed and synthesized, developing novel antibiotics and enzymatic inhibitors directed toward specific targets. Within a work directed to the synthesis of mimetics for RGD (Arg-Gly-Asp) sequence able to interact with αvβ3 and α5β1-type integrins, new activators were developed and their Structure-Activity Relationships (SAR) analysis deepened, enhancing their activity range towards the α4β1 isoform. Moreover, to synthesize novel compounds active both against bacterial infections and pulmonary conditions of cystic fibrosis patients, new β-lactam candidates were studied. Among the abundant library of β-lactams prepared, mainly with antioxidant and antibacterial double activities, it was identified a single lead to be pharmacologically tested in vivo. Its synthesis was optimized up to the gram-scale, and pretreatment method and HPLC-MS/MS analytical protocol for sub-nanomolar quantifications were developed. Furthermore, replacement of acetoxy group in 4-acetoxy-azetidinone derivatives was studied with different nucleophiles and in aqueous media. A phosphate group was introduced and the reactivity exploited using different hydroxyapatites, obtaining biomaterials with multiple biological activities. Following the same kind of reactivity, a small series of molecules with a β-lactam and retinoic hybrid structure was synthesized as epigenetic regulators. Interacting with HDACs, two compounds were respectively identified as an inhibitor of cell proliferation and a differentiating agent on steam cells. Additionally, in collaboration with Professor L. De Cola at ISIS, University of Strasbourg, some new photochemically active β-lactam Pt (II) complexes were designed and synthesized to be used as bioprobes or theranostics. Finally, it was set up and optimized the preparation of new chiral proline-derived α-aminonitriles through an enantioselective Strecker reaction, and it was developed a chemo-enzymatic oxidative method for converting alcohols to aldehydes or acid in a selective manner, and amines to relative aldehydes, amides or imines. Moreover, enzymes and other green chemistry methodologies were used to prepare Active Pharmaceutical Ingredients (APIs).
Resumo:
In this thesis, new advances in the development of spectroscopic based methods for the characterization of heritage materials have been achieved. As concern FTIR spectroscopy new approaches aimed at exploiting near and far IR region for the characterization of inorganic or organic materials have been tested. Paint cross-section have been analysed by FTIR spectroscopy in the NIR range and an “ad hoc” chemometric approach has been developed for the elaboration of hyperspectral maps. Moreover, a new method for the characterization of calcite based on the use of grinding curves has been set up both in MIR and in FAR region. Indeed, calcite is a material widely applied in cultural heritage, and this spectroscopic approach is an efficient and rapid tool to distinguish between different calcite samples. Different enhanced vibrational techniques for the characterisation of dyed fibres have been tested. First a SEIRA (Surface Enhanced Infra-Red Absorption) protocol has been optimised allowing the analysis of colorant micro-extracts thanks to the enhancement produced by the addition of gold nanoparticles. These preliminary studies permitted to identify a new enhanced FTIR method, named ATR/RAIRS, which allowed to reach lower detection limits. Regarding Raman microscopy, the research followed two lines, which have in common the aim of avoiding the use of colloidal solutions. AgI based supports obtained after deposition on a gold-coated glass slides have been developed and tested spotting colorant solutions. A SERS spectrum can be obtained thanks to the photoreduction, which the laser may induce on the silver salt. Moreover, these supports can be used for the TLC separation of a mixture of colorants and the analyses by means of both Raman/SERS and ATR-RAIRS can be successfully reached. Finally, a photoreduction method for the “on fiber” analysis of colorant without the need of any extraction have been optimised.
Resumo:
Since its approval by FDA in 2001, capsule endoscopy revolutionized the study of small bowel. One of the main limitations of its diffusion has been the high cost. More recently, a new videocapsule system (OMOM CE) has been developed in China and obtained the CE mark. Its cost is approximately half that of other capsule systems. However, there are few studies regarding the clinical experience with this new videocapsule system and none of them has been performed in the western world. Among the limitations of capsule endoscopy, there is also one linked to the diagnostic yield. The rapid transit of the device in the proximal segments implies a high risk of false negatives; an indirect confirmation of this limit is offered by the poor ability to identify the papilla of Vater. In addition, recent studies show that in patients with obscure gastrointestinal bleeding, the negative outcome of capsule endoscopy is correlated to a significant risk of recurrence of anemia in the short term, as well as the presence of small bowel lesions documented by a second capsule endoscopy. It was recently approved the use of a new device called "CapsoCam" (CapsoVision, Inc. Saratoga) characterized by four side cameras that offer a panoramic view of 360 degrees, instead of the front to 160°. Two recent pilot studies showed comparable safety profiles and diagnostic yield with the more standardized capsule. Namely, side vision has made possible a clear visualization of the papilla in 70% of cases. The aim of our study is to evaluate the feasibility and diagnostic yield of these two new devices, which first may allow a reduction in costs. Moreover, their complementary use could lead to a recovery diagnostic in patients with false negative results in an initial investigation.
Resumo:
One of the most important challenges in chemistry and material science is the connection between the contents of a compound and its chemical and physical properties. In solids, these are greatly influenced by the crystal structure.rnrnThe prediction of hitherto unknown crystal structures with regard to external conditions like pressure and temperature is therefore one of the most important goals to achieve in theoretical chemistry. The stable structure of a compound is the global minimum of the potential energy surface, which is the high dimensional representation of the enthalpy of the investigated system with respect to its structural parameters. The fact that the complexity of the problem grows exponentially with the system size is the reason why it can only be solved via heuristic strategies.rnrnImprovements to the artificial bee colony method, where the local exploration of the potential energy surface is done by a high number of independent walkers, are developed and implemented. This results in an improved communication scheme between these walkers. This directs the search towards the most promising areas of the potential energy surface.rnrnThe minima hopping method uses short molecular dynamics simulations at elevated temperatures to direct the structure search from one local minimum of the potential energy surface to the next. A modification, where the local information around each minimum is extracted and used in an optimization of the search direction, is developed and implemented. Our method uses this local information to increase the probability of finding new, lower local minima. This leads to an enhanced performance in the global optimization algorithm.rnrnHydrogen is a highly relevant system, due to the possibility of finding a metallic phase and even superconductor with a high critical temperature. An application of a structure prediction method on SiH12 finds stable crystal structures in this material. Additionally, it becomes metallic at relatively low pressures.
Resumo:
Systemic lupus erythematosus is a chronic autoimmune disorder that predominantly affects women of childbearing age. Lupus-associated glomerulonephritis is a major cause of mortality in these patients. Current treatment protocols for systemic lupus erythematosus include cyclophosphamide, prednisolone, azathioprine, and mycophenolate mofetil. However, in mice none of these agents alone or in combination were shown to reverse established proteinuria. Using New Zealand Black x New Zealand White F1 mice, we report that administration of the topoisomerase I inhibitor irinotecan from week 13 completely prevented the onset of proteinuria and prolonged survival up to at least 90 wk without detectable side effects. Furthermore, application of irinotecan to mice with established lupus nephritis, as indicated by grade 3+ (> or =300 mg/dl) and grade 4+ (> or =2000 mg/dl) proteinuria and, according to a median age of 35 wk, resulted in remission rates of 75% and 55%, respectively. Survival was significantly prolonged with 73 wk (grade 3+ and 4+ combined) versus 40 wk for control animals. Although total IgG and anti-dsDNA Abs in the serum and mesangial IgG deposits in the kidneys were not reduced in irinotecan-treated mice, subendothelial immune deposits were considerably diminished, suggesting a prevention of glomerular basement membrane disruption. This effect was accompanied by increased rates of ssDNA breaks and inhibition of renal cell apoptosis being different to what is known about irinotecan in anticancer therapy. In conclusion, our data provide evidence that irinotecan might represent an entirely new strategy for the treatment of systemic lupus erythematosus.
Resumo:
Since the late 1990s the illicit drug market has undergone considerable change: along with the traditional drugs of abuse that still dominate, more than 100 psychotropic substances designed to bypass controlled substances legislation have appeared and led to intoxications and fatalities. Starting from the huge class of phenylalkylamines, containing many subgroups, the spectrum of structures has grown from tryptamines, piperazines, phenylcyclohexyl derivates and pyrrolidinophenones to synthetic cannabinoids and the first synthetic cocaine. Due to the small prevalence and high number of unknown substances, the detection of new designer drugs is a challenge for clinical and forensic toxicologists. Standard screening procedures might fail because a recently discovered or yet unknown substance has not been incorporated in the library used. Nevertheless, many metabolism studies, case reports, screening methods and substance-profiling papers concentrating on single compounds have been published. This review provides an overview of the developed bioanalytical and analytical methods, the matrices used, sample-preparation procedures, concentration of analytes in case of intoxication and also gives a résumé of immunoassay experiences. Additionally, six screening methods for biological matrices with a larger spectrum of analytes are described in more detail.
Resumo:
Epothilones are potent antiproliferative agents, which have served as successful lead structures for anticancer drug discovery. However, their therapeutic efficacy would benefit greatly from an increase in their selectivity for tumor cells, which may be achieved through conjugation with a tumor-targeting moiety. Three novel epothilone analogs bearing variously functionalized benzimidazole side chains were synthesized using a strategy based on palladium-mediated coupling and macrolactonization. The synthesis of these compounds is described and their in vitro biological activity is discussed with respect to their interactions with the tubulin/microtubule system and the inhibition of human cancer cell proliferation. The additional functional groups may be used to synthesize conjugates of epothilone derivatives with a variety of tumor-targeting moieties.
Resumo:
Recent research with several species of nonhuman primates suggests sophisticated motor-planning abilities observed in human adults may be ubiquitous among primates. However, there is considerable variability in the extent to which these abilities are expressed across primate species. In the present experiment, we explore whether the variability in the expression of anticipatory motor-planning abilities may be attributed to cognitive differences (such as tool use abilities) or whether they may be due to the consequences of morphological differences (such as being able to deploy a precision grasp). We compared two species of New World monkeys that differ in their tool use abilities and manual dexterity: squirrel monkeys, Saimiri sciureus (less dexterous with little evidence for tool use) and tufted capuchins, Sapajus apella (more dexterous and known tool users). The monkeys were presented with baited cups in an untrained food extraction task. Consistent with the morphological constraint hypothesis, squirrel monkeys frequently showed second-order motor planning by inverting their grasp when picking up an inverted cup, while capuchins frequently deployed canonical upright grasping postures. Findings suggest that the lack of ability for precision grasping may elicit more consistent second-order motor planning, as the squirrel monkeys (and other species that have shown a high rate of second-order planning) have fewer means of compensating for inefficient initial postures. Thus, the interface between morphology and motor planning likely represents an important factor for understanding both the ontogenetic and phylogenetic origins of sophisticated motor-planning abilities.