1000 resultados para Receptor nicotínico de acetilcolina
Resumo:
BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated.
OBJECTIVE: In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways.
METHODS: Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1.
RESULTS: Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current.
CONCLUSIONS: Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.
Resumo:
This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.
Resumo:
A leading theory hypothesizes that schizophrenia arises from dysregulation of the dopamine system in certain brain regions. As this dysregulation could arise from abnormal expression of D2 dopamine receptors, the D2 receptor gene (DRD2) on chromosome 11q is a candidate locus for schizophrenia. We tested whether allelic variation at DRD2 and five surrounding loci cosegregated with schizophrenia in 112 small- to moderate-size Irish families containing two or more members affected with schizophrenia or schizoaffective disorder, defined by DSM-III-R. Evidence of linkage was assessed using varying definitions of illness and modes of transmission. Assuming genetic homogeneity, linkage between schizophrenia and large regions of 11q around DRD2 could be strongly excluded. Assuming genetic heterogeneity, variation at the DRD2 locus could be rejected as a major risk factor for schizophrenia in more than 50% of these families for all models tested and in as few as 25% of the families for certain models. The DRD2 linkage in fewer than 25% of these families could not be excluded under any of the models tested. Our results suggest that the major component of genetic susceptibility to schizophrenia is not due to allelic variation at the DRD2 locus or other genes in the surrounding chromosomal region.
Resumo:
Purpose: Polymorphisms in the vitamin D receptor (VDR) gene may be of etiological importance in determining cancer risk. The aim of this study was to assess the association between common VDR gene polymorphisms and esophageal adenocarcinoma (EAC) risk in an all-Ireland population-based case-control study. Methods: EAC cases and frequency-matched controls by age and gender recruited between March 2002 and December 2004 throughout Ireland were included. Participants were interviewed, and a blood sample collected for DNA extraction. Twenty-seven single nucleotide polymorphisms in the VDR gene were genotyped using Sequenom or TaqMan assays while the poly(A) microsatellite was genotyped by fluorescent fragment analysis. Unconditional logistic regression was applied to assess the association between VDR polymorphisms and EAC risk. Results: A total of 224 cases of EAC and 256 controls were involved in analyses. After adjustment for potential confounders, TT homozygotes at rs2238139 and rs2107301 had significantly reduced risks of EAC compared with CC homozygotes. In contrast, SS alleles of the poly(A) microsatellite had significantly elevated risks of EAC compared with SL/LL alleles. However, following permutation analyses to adjust for multiple comparisons, no significant associations were observed between any VDR gene polymorphism and EAC risk. Conclusions: VDR gene polymorphisms were not significantly associated with EAC development in this Irish population. Confirmation is required from larger studies. © Springer Science+Business Media, LLC 2011.
Resumo:
Interleukin-17A, the prototypical member of the interleukin-17 cytokine family, coordinates local tissue inflammation by recruiting neutrophils to sites of infection. Dysregulation of interleukin-17 signalling has been linked to the pathogenesis of inflammatory diseases and autoimmunity. The interleukin-17 receptor family members (A-E) have a broad range of functional effects in immune signalling yet no known role has been described for the remaining orphan receptor, interleukin-17 receptor D, in regulating interleukin-17A-induced signalling pathways. Here we demonstrate that interleukin-17 receptor D can differentially regulate the various pathways employed by interleukin-17A. Neutrophil recruitment, in response to in vivo administration of interleukin-17A, is abolished in interleukin-17 receptor D-deficient mice, correlating with reduced interleukin-17A-induced activation of p38 mitogen-activated protein kinase and expression of the neutrophil chemokine MIP-2. In contrast, interleukin-17 receptor D deficiency results in enhanced interleukin-17A-induced activation of nuclear factor-kappa B and interleukin-6 and keratinocyte chemoattractant expression. Interleukin-17 receptor D disrupts the interaction of Act1 and TRAF6 causing differential regulation of nuclear factor-kappa B and p38 mitogen-activated protein kinase signalling pathways. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.
Resumo:
The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.
Resumo:
The interactions of epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) with the epidermal growth factor receptor (EGFR) were examined by insertion mutagenesis of the receptor. Seventeen insertions were made throughout a construct containing only the extracellular domain. This truncated receptor (sEGFR) was secreted and had a dissociation constant similar to that of the full-length solubilized receptor. Receptors with insertions within subdomain III were not secreted. Two receptors with insertions at positions 291 and 474, which border subdomain III, have significantly decreased binding to both EGF and TGF alpha relative to wild type. This confirms previous work demonstrating that subdomain III forms the primary binding site for EGF and TGF alpha. Four of the mutants within subdomain II had a decreased binding to TGF alpha relative to wild type, but had wild type binding to EGF. These results suggest that a region within subdomain II may selectively regulate the binding of TGF alpha. Two receptors which contained insertions within subdomains II and IV, approximately equidistant from the center of subdomain III, bound twofold more ligand molecules than wild type receptor, with an affinity similar to that of wild type receptor. These findings suggest that insertion at these positions allows the access of more than one ligand molecule to the binding site.
Resumo:
Abstract
INTRODUCTION:
Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
METHODS:
Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca(2+) microfluorimetry.
RESULTS:
Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca(2+) microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca(2+)](i)) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
CONCLUSIONS:
Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.
Resumo:
Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.
Resumo:
This study was designed to assess the potential of the continuous erythropoietin receptor activator (C.E.R.A.) to correct anemia at extended administration intervals in erythropoiesis-stimulating agent-naīve patients with chronic kidney disease (CKD) not on dialysis and to determine its optimal starting dose.