958 resultados para Receptor 2 Toll-Like
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Resumo:
Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1), oxyntomodulin (OXM), and glucagon are posttranslational end products of the glucagon gene expressed in intestinal L-cells. In vivo, these peptides are potent inhibitors of gastric acid secretion via several pathways, including stimulation of somatostatin release. We have examined the receptors through which these peptides stimulate somatostatin secretion using the somatostatin-secreting cell line RIN T3. tGLP-1, OXM, and glucagon stimulated somatostatin release and cAMP accumulation in RIN T3 cells to similar maximum levels, with ED50 values close to 0.2, 2, and 50 nM and 0.02, 0.3, and 8 nM, respectively. Binding of [125I]tGLP-1, [125I]OXM, and [125I]glucagon to RIN T3 plasma membranes was inhibited by the three peptides, with relative potencies as follows: tGLP-1 > OXM > glucagon. Whatever the tracer used, the IC50 for tGLP-1 was close to 0.15 nM and was shifted rightward for OXM and glucagon by about 1 and 2-3 orders of magnitude, respectively. Scatchard analyses for the three peptides were compatible with a single class of receptor sites displaying a similar maximal binding close to 2 pmol/mg protein. In the hamster lung fibroblast cell line CCL39 transfected with the receptor for tGLP-1, binding of [125I]tGLP-1 was inhibited by tGLP-1, OXM, and glucagon, with relative potencies close to those obtained with RIN T3 membranes. Chemical cross-linking of [125I]tGLP-1, [125I]OXM, and [125I]glucagon revealed a single band at 63,000 mol wt, the intensity of which was dose-dependently reduced by all three peptides. These data suggest that in the somatostatin-secreting cell line RIN T3, OXM and glucagon stimulate somatostatin release through a tGLP-1-preferring receptor. This suggests that some biological effects, previously described for these peptides, might be due to their interaction with this receptor.
Resumo:
Evidence that glucagon-like peptide-1 (GLP-1) (7-36) amide functions as a novel neuropeptide prompted us to study the gene expression of its receptor in rat brain. Northern blot analysis showed transcripts of similar size in RINm5F cells, hypothalamus, and brain-stem. First-strand cDNA was prepared by using RNA from hypothalamus, brainstem, and R1Nm5F cells and subsequently amplified by PCR. Southern blot analysis of the PCR products showed a major 1.4-kb band in all these preparations. PCR products amplified from hypothalamus were cloned, and the nucleotide sequence of one strand was identical to that described in rat pancreatic islets. In situ hybridization studies showed specific labeling in both neurons and glia of the thalamus, hypothalamus, hippocampus, primary olfactory cortex, choroid plexus, and pituitary gland. In the hypothalamus, ventromedial nuclei cells were highly labeled. These findings indicate that GLP-1 receptors are actually synthesized in rat brain. In addition, the colocalization of GLP-1 receptors, glucokinase, and GLUT-2 in the same areas supports the idea that these cells play an important role in glucose sensing in the brain.
Resumo:
Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.
Resumo:
L’athérosclérose est une maladie vasculaire inflammatoire chronique qui se développe progressivement au cours de la vie. Les mécanismes impliqués sont complexes et la recherche de nouveaux candidats impliqués dans l'athérogénèse est toujours d'actualité. L’Angiopoietine-like 2 (Angptl2) est une protéine relativement peu connue, aux propriétés pro-angiogéniques et pro-inflammatoires, qui appartient par homologie à la grande famille des angiopoietines, mais dont le récepteur n'est pas encore clairement identifié. Les situations pathologiques dans lesquelles l’Angptl2 jouerait un rôle crucial sont diverses, mais sa contribution moléculaire dans le développement de l’athérosclérose est inconnue. Par differential display, nous avons initialement identifié l'Angptl2 comme étant surexprimée dans des cellules endothéliales sénescentes, isolées et cultivées à partir d'artères mammaires internes de patients athérosclérotiques ayant subi un pontage coronarien. Cette découverte a été la à base de mon projet, et mes objectifs ont été 1) de déterminer l'implication de l’Angptl2 vasculaire en présence de facteurs de risques tels que le tabagisme et la dyslipidémie, 2) de produire et de purifier une protéine recombinante fonctionnelle de l’Angptl2 afin d'identifier in vitro de nouvelles propriétés cellulaires de l'Angptl2 et 3) d'étudier in vivo le potentiel pro-athérogénique de l'Angptl2 recombinante dans un modèle murin de dyslipidémie sévère. Nous avons montré que l’Angptl2 est sécrétée préférentiellement dans des conditions pro-oxydantes et pro-inflammatoires, avec une augmentation de son expression endothéliale de l’ordre de 6 fois chez des patients coronariens fumeurs atteints de maladie pulmonaire obstructive chronique. Suite à ces résultats, nous avons émis l’hypothèse que l’Angptl2, en plus de ses fonctions pro-inflammatoires connues, possède des propriétés pro-oxydantes. Nous avons démontré que l’Angptl2 recombinante stimule en effet la production de radicaux libres dans des HUVEC en culture, via l’inhibition partielle de la voie cytoprotectrice antioxydante Nrf2/HO-1 et potentiellement via l'activation de kinase intracellulaire de type p38. A l'aide de souris dyslipidémiques LDLr-/-; hApoB-100+/+, nous avons démontré que le niveau d’Angptl2 plasmatique, vasculaire et dans les plaques athéromateuses, augmente parallèlement avec le développement de l’athérosclérose. De plus, une stimulation avec l’Angptl2 recombinante engendre chez ces souris une réponse inflammatoire évaluée par l’expression endothéliale de cytokines et de molécules d'adhésion et par l’infiltration de leucocytes sur l’endothélium vasculaire. Finalement, l’administration intraveineuse de la protéine recombinante d’Angptl2 pendant quatre semaines à des souris LDLr-/-; hApoB-100+/+ augmente de 10 fois l'expansion de la plaque athérosclérotique et double leur taux de cholestérol circulant. Nous avons aussi montré que chez des patients athérosclérotiques, l'Angptl2 plasmatique est 6 fois plus élevée que chez des sujets sains du même âge. Nos études semblent donc définir l’Angptl2 comme un facteur contribuant directement au développement de l'athérosclérose en favorisant la sénescence, l’inflammation et l’oxydation des cellules endothéliales. Ces propriétés pourraient globalement définir l'Angptl2, non seulement comme un nouveau biomarqueur circulant de l’athérosclérose, mais également comme l'un de ses promoteurs.
Resumo:
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR.RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.
Resumo:
Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a-d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), beta-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and beta-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and beta-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B(2) receptor, which transiently interacts with beta-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/beta-arrestin complex, freeing internalized receptors from beta-arrestins and promoting recycling and resensitization.
Resumo:
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene-related peptide (CGRP). Although CGRP induces endocytosis of CLR/RAMP1, little is known about post-endocytic sorting of these proteins. We observed that the duration of stimulation with CGRP markedly affected post-endocytic sorting of CLR/RAMP1. In HEK and SK-N-MC cells, transient stimulation (10(-7) M CGRP, 1 h), induced CLR/RAMP1 recycling with similar kinetics (2-6 h), demonstrated by labeling receptors in living cells with antibodies to extracellular epitopes. Recycling of CLR/RAMP1 correlated with resensitization of CGRP-induced increases in [Ca(2+)](i). Cycloheximide did not affect resensitization, but bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPases, abolished resensitization. Recycling CLR and RAMP1 were detected in endosomes containing Rab4a and Rab11a, and expression of GTPase-defective Rab4aS22N and Rab11aS25N inhibited resensitization. After sustained stimulation (10(-7) M CGRP, >2 h), CLR/RAMP1 trafficked to lysosomes. RAMP1 was degraded approximately 4-fold more rapidly than CLR (RAMP1, 45% degradation, 5 h; CLR, 54% degradation, 16 h), determined by Western blotting. Inhibitors of lysosomal, but not proteasomal, proteases prevented degradation. Sustained stimulation did not induce detectable mono- or polyubiquitination of CLR or RAMP1, determined by immunoprecipitation and Western blotting. Moreover, a RAMP1 mutant lacking the only intracellular lysine (RAMP1K142R) internalized and was degraded normally. Thus, after transient stimulation with CGRP, CLR and RAMP1 traffic from endosomes to the plasma membrane, which mediates resensitization. After sustained stimulation, CLR and RAMP1 traffic from endosomes to lysosomes by ubiquitin-independent mechanisms, where they are degraded at different rates.
Resumo:
Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.
Resumo:
We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of the present study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to HEK-293T (human embryonic kidney) cells in which the HIV can be grown. Furthermore, HEK-293T cells activate both platelets and CLEC-2-transfected DT-40 B-cells. The transmembrane protein podoplanin was identified on HEK-293T cells and was demonstrated to mediate both binding of HEK-293T cells to CLEC-2 and HEK-293T cell activation of CLEC-2-transfected DT-40 B-cells. Podoplanin is expressed on renal cells (podocytes). Furthermore, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5+/-3.7 microM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells.
Resumo:
Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.