982 resultados para Reading in the screen
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Direct repeats in the flavivirus 3' untranslated region; a strategy for survival in the environment?
Resumo:
Previously, direct repeats (DRs) of 20-70 nucleotides were identified in the 3' untranslated regions (3'UTR) of flavivirus sequences. To address their functional significance, we have manually generated a pan-flavivirus 3'UTR alignment and correlated it with the corresponding predicted RNA secondary structures. This approach revealed that intra-group-conserved DRs evolved from six long repeated sequences (LRSs) which, as approximately 200-nucleotide domains were preserved only in the genomes of the slowly evolving tick-borne flaviviruses. We propose that short DRs represent the evolutionary remnants of LRSs rather than distinct molecular duplications. The relevance of DRs to virus replication enhancer function, and thus survival, is discussed.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In the Loess Plateau, China, arable cultivation of slope lands is common and associated with serious soil erosion. Planting trees or grass may control erosion, but planted species may consume more soil water and can threaten long-term ecosystem sustainability. Natural vegetation succession is an alternative ecological solution to restore degraded land, but there is a time cost, given that the establishment of natural vegetation, adequate to prevent soil erosion, is a longer process than planting. The aims of this study were to identify the environmental factors controlling the type of vegetation established on abandoned cropland and to identify candidate species that might be sown soon after abandonment to accelerate vegetation succession and establishment of natural vegetation to prevent soil erosion. A field survey of thirty-three 2 × 2–m plots was carried out in July 2003, recording age since abandonment, vegetation cover, and frequency of species together with major environmental and soil variables. Data were analyzed using correspondence analysis, classification tree analysis, and species response curves. Four vegetation types were identified and the data analysis confirmed the importance of time since abandonment, total P, and soil water in controlling the type of vegetation established. Among the dominant species in the three late-successional vegetation types, the most appropriate candidates for accelerating and directing vegetation succession were King Ranch bluestem (Bothriochloa ischaemum) and Lespedeza davurica (Leguminosae). These species possess combinations of the following characteristics: tolerance of low water and nutrient availability, fibrous root system and strong lateral vegetative spread, and a persistent seed bank.
Resumo:
The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.
Resumo:
The last 30 years have seen a tide of interest sweeping across Europe in the development of nature in cities, and an increasing amount of landscape development in urban areas has involved the use of 'naturalistic' styles. This is an increasing attempt to find ways for urbanism and nature to co-exist. However, there have been considerable discussions among professionals regarding the advantages and disadvantages of 'naturalistic' styles in urban areas. This research examines professional attitudes to 'naturalistic' landscape styles in Britain, in contrast to more traditional, formal landscape styles, and aims to find out whether the interest in natural landscapes is really a fashion among landscape professionals. A self-administered postal survey was carried out using both quantitative and qualitative data collection techniques and analysis. The survey included 500 professionals from parks and recreation departments of local authorities, private landscape practices and conservation trusts, and resulted in a satisfactory response rate of 53 %. The results of this study suggested that professionals recognise most of the values attached to naturalistic landscapes in urban areas. However, possible benefits that natural areas may have for urban people are not attached to naturalistic landscapes alone. The study also revealed that the naturalistic style is highly popular among conservation trusts but is less so among professionals from local authorities and private landscape practices who seem to appreciate both styles and believe that these styles are not separable from each other and should co-exist in an urban environment. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas.
A qualitative host-pathogen interaction in the Theobroma cacao-Moniliophthora perniciosa pathosystem
Resumo:
The aim of this study was to test whether resistance of clones of Theobroma cacao ( cocoa) varied between isolates of Moniliophthora (formerly Crinipellis) perniciosa, the cause of witches' broom disease. Developing buds of vegetatively propagated T. cacao grown in greenhouses in the UK were inoculated with 16 000 spores of M. perniciosa per meristem in water, under conditions where water condensed on the inoculated shoot for at least 12 h after inoculation. The proportion of successful inoculations varied between clones and was inversely correlated with time to symptom production or broom formation. A specific interaction was demonstrated among three single-spore isolates of M. perniciosa and the clone Scavina 6 (SCA 6) and a variety of susceptible clones. Isolates Castenhal-I and APC3 were equally likely to infect SCA 6 and the other clones, but isolate Gran Couva A9 never infected SCA 6, although it was as virulent on the other clones. The interaction was maintained when the wetness period was extended to 70 h. Offspring of SCA 6 x Amelonado matings were all susceptible to both Castenhal-I and GC-A5, with no evidence of greater variability in susceptibility to GC-A5 than Castanhal-I. This suggests recessive inheritance of a single homozygous factor conferring resistance to GC-A5, from SCA 6. The progenies were slightly more susceptible to Castanhal-I than GC-A5. The implications for managing the disease are discussed.
Resumo:
The possibility that parents of one sex may preferentially invest in offspring of a certain sex raises profound evolutionary questions about the relative worth of sons and daughters to their mothers and fathers. Post-fledging brood division-in which cacti parent feeds a different subset of offspring-has been well documented in birds. However, a lack of empirical evidence that this may be based oil offspring sex, combined with the theoretical difficulty of explaining such an interaction, has led researchers to consider a gender bias in post-fledging brood division highly unlikely. Here we show that in the toc-toc, Foudia sechellarum, postfledging brood division is extreme and determined by sex; where brood composition allows, male parents exclusively provision male fledglings, whereas female parents provision female fledglings. This is the first study to provide unambiguous evidence, based on molecular sexing, that sex-biased post-fledging brood division can occur in birds. Male and female parents provisioned at the same rate and neither offspring nor parent survival appeared to be affected by the sex of the parent or offspring, respectively. The current hypotheses predicting advantages for brood division and preferential care for one specific type of offspring are discussed in the light of our results.
Resumo:
We hypothesized that the hepatotoxicity that develops after the induction of oxidative stress (induced by d-galactosamine [GalN]) can be ameliorated by alpha-tocopherol (ATC) and the soy isoflavone daidzein. To test this, we ranked and assigned male Wistar rats into 6 groups, which involved pretreatment (ATC or daidzein) for 1 hour followed by treatment (GalN) for 23 hours. Histopathologic analysis showed that GalN administration induced marked necrosis (P < .001), steatosis (P < .001), both lobular and portal inflammations (P < .001), overall histopathologic score (P < .001), and activation of caspase-3 in the liver (P < .001). Immunohistochemical staining of malondialdehyde-protein adducts, a measure of oxidative stress, was increased in response to GalN (P < .001). Paradoxically, there were increases in total (P < .05) and cytosolic superoxide dismutase (P < .001) activities after GalN administration, indicative of an up-regulation of antioxidant defenses. The concentration of total protein (P < .001), albumin (P < .01), and globulin fractions (P < .001) in the plasma, as well as the activity of aspartate aminotransferase (P < .001), was significantly perturbed after GalN treatment, reflective of overall acute hepatic injury. Administration of daidzein showed a significant amelioration of the Ga1N-induced increase in malondialdehyde-protein adducts (P < .01) and cytosolic superoxide dismutase activities (P < .01) in the liver. However, all other variables were not significantly altered in response to daidzein. In response to ATC pretreatment, the total histopathologic score (P < .05), degree of necrosis (P < .05), and both lobular (P < .05) and portal (P = .05) inflammations were significantly ameliorated. To conclude, both daidzein and ATC protect the liver against oxidative damage possibly via different pathways.
Resumo:
Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We investigated the ability of a selection of human influenza A viruses, including recent clinical isolates, to induce IFN-beta production in cultured cell lines. In contrast to the well-characterized laboratory strain A/PR/8/34, several, but not all, recent isolates of H3N2 viruses resulted in moderate IFN-beta stimulation. Through the generation of recombinant viruses, we were able to show that this is not due to a loss of the ability of the NS1 genes to suppress IFN-beta induction; indeed, the NS1 genes behaved similarly with respect to their abilities to block dsRNA signaling. Interestingly, replication of A/Sydney/5/97 virus was less Susceptible to pre-treatment with IFN-alpha than the other viruses. In contrast to the universal effect on dsRNA signaling, we noted differences in the effect of NS1 proteins on expression of interferon stimulated genes and also genes induced by a distinct pathway. The majority of NS1 proteins blocked expression From both IFN-dependent and TNF-dependent promoters by an apparent post-transcriptional mechanism. The NS1 gene of A/PR/8/34 NS1 did not confer these blocks. We noted striking differences in the Cellular localization of different influenza A virus NS1 proteins during infection, which might explain differences in biological activity. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The full lengths of three genome segments of Iranian wheat stripe virus (IWSV) were amplified by reverse transcription (RT) followed by polymerase chain reaction (PCR) using a primer complementary to tenuivirus conserved terminal sequences. The segments were sequenced and found to comprise 3469, 2337, and 1831 nt, respectively. The gene organization of these segments is similar to that of other known tenuiviruses, each displaying an ambisense coding strategy. IWSV segments, however, are different from those of other viruses with respect to the number of nucleotides and deduced amino acid sequence for each ORF. Depending on the segment, the first 16-22 nt at the 5' end and the first 16 nt at the 3' end are highly conserved among IWSV and rice hoja blanca virus (RHBV), rice stripe virus (RSV) and maize stripe virus ( MStV). In addition, the first 15-18 nt at the 5' end are complementary to the first 16-18 nt at the 3' end. Phylogenetic analyses showed close similarity and a common ancestor for IWSV, RHBV, and Echinochloa hoja blanca virus (EHBV). These findings confirm the position of IWSV as a distinct species in the genus Tenuivirus.