955 resultados para Reading ability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude-height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet- based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate results is found for the model domain used. Evidence is found of a trade-off between the localization of features in positional and spectral spaces when the number of bands is changed. By examining implied covariance diagnostics, the wavelet-based schemes are found, on the whole, to give results that are closer to diagnostics found from the explicit matrix than from the nonwavelet scheme. Even though the nature of the covariances has the right qualities in spectral space, variances are found to be too low at some wavenumbers and vertical correlation length scales are found to be too long at most scales. The wavelet schemes are found to be good at resolving variations in position and scale-dependent horizontal length scales, although the length scales reproduced are usually too short. The second of the wavelet-based schemes is often found to be better than the first in some important respects, but, unlike the first, it has no exact inverse transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapour content in these regions is determined by their ``origins'', here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using ERA40 data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite observations of convective system properties and lightning flash rate are used to investigate the ability of potential lightning parameterizations to capture both the dominant land-ocean contrast in lightning occurrence and regional differences between Africa, the Amazon and the islands of the maritime continent. As found in previous studies, the radar storm height is tightly correlated with the lightning flash rate. A roughly second order power-law fit to the mean radar echo top height above the 0C isotherm is shown to capture both regional and land-ocean contrasts in lightning occurrence and flash rate using a single set of parameters. Recent developments should soon make it possible to implement a parameterization of this kind in global models. Parameterizations based on cloud top height, convective rain rate and convective rain fraction all require the use of separate fits over land and ocean and fail to capture observed differences between continental regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes benchmark testing of six two-dimensional (2D) hydraulic models (DIVAST, DIVASTTVD, TUFLOW, JFLOW, TRENT and LISFLOOD-FP) in terms of their ability to simulate surface flows in a densely urbanised area. The models are applied to a 1·0 km × 0·4 km urban catchment within the city of Glasgow, Scotland, UK, and are used to simulate a flood event that occurred at this site on 30 July 2002. An identical numerical grid describing the underlying topography is constructed for each model, using a combination of airborne laser altimetry (LiDAR) fused with digital map data, and used to run a benchmark simulation. Two numerical experiments were then conducted to test the response of each model to topographic error and uncertainty over friction parameterisation. While all the models tested produce plausible results, subtle differences between particular groups of codes give considerable insight into both the practice and science of urban hydraulic modelling. In particular, the results show that the terrain data available from modern LiDAR systems are sufficiently accurate and resolved for simulating urban flows, but such data need to be fused with digital map data of building topology and land use to gain maximum benefit from the information contained therein. When such terrain data are available, uncertainty in friction parameters becomes a more dominant factor than topographic error for typical problems. The simulations also show that flows in urban environments are characterised by numerous transitions to supercritical flow and numerical shocks. However, the effects of these are localised and they do not appear to affect overall wave propagation. In contrast, inertia terms are shown to be important in this particular case, but the specific characteristics of the test site may mean that this does not hold more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining how El Niño and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean–atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Niño mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Niño as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Niño indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Niño, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate seasonal forecasts rely on the presence of low frequency, predictable signals in the climate system which have a sufficiently well understood and significant impact on the atmospheric circulation. In the Northern European region, signals associated with seasonal scale variability such as ENSO, North Atlantic SST anomalies and the North Atlantic Oscillation have not yet proven sufficient to enable satisfactorily skilful dynamical seasonal forecasts. The winter-time circulations of the stratosphere and troposphere are highly coupled. It is therefore possible that additional seasonal forecasting skill may be gained by including a realistic stratosphere in models. In this study we assess the ability of five seasonal forecasting models to simulate the Northern Hemisphere extra-tropical winter-time stratospheric circulation. Our results show that all of the models have a polar night jet which is too weak and displaced southward compared to re-analysis data. It is shown that the models underestimate the number, magnitude and duration of periods of anomalous stratospheric circulation. Despite the poor representation of the general circulation of the stratosphere, the results indicate that there may be a detectable tropospheric response following anomalous circulation events in the stratosphere. However, the models fail to exhibit any predictability in their forecasts. These results highlight some of the deficiencies of current seasonal forecasting models with a poorly resolved stratosphere. The combination of these results with other recent studies which show a tropospheric response to stratospheric variability, demonstrates a real prospect for improving the skill of seasonal forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation. Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values. This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure. For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies. The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are presented from a new web application called OceanDIVA - Ocean Data Intercomparison and Visualization Application. This tool reads hydrographic profiles and ocean model output and presents the data on either depth levels or isotherms for viewing in Google Earth, or as probability density functions (PDFs) of regional model-data misfits. As part of the CLIVAR Global Synthesis and Observations Panel, an intercomparison of water mass properties of various ocean syntheses has been undertaken using OceanDIVA. Analysis of model-data misfits reveals significant differences between the water mass properties of the syntheses, such as the ability to capture mode water properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a 2D numerical model of flood hydraulics is tested for a major event in Carlisle, UK, in 2005. This event is associated with a unique data set, with GPS surveyed wrack lines and flood extent surveyed 3 weeks after the flood. The Simple Finite Volume (SFV) model is used to solve the 2D Saint-Venant equations over an unstructured mesh of 30000 elements representing channel and floodplain, and allowing detailed hydraulics of flow around bridge piers and other influential features to be represented. The SFV model is also used to corroborate flows recorded for the event at two gauging stations. Calibration of Manning's n is performed with a two stage strategy, with channel values determined by calibration of the gauging station models, and floodplain values determined by optimising the fit between model results and observed water levels and flood extent for the 2005 event. RMS error for the calibrated model compared with surveyed water levels is ~±0.4m, the same order of magnitude as the estimated error in the survey data. The study demonstrates the ability of unstructured mesh hydraulic models to represent important hydraulic processes across a range of scales, with potential applications to flood risk management.