977 resultados para Reaching
Resumo:
Fifty-seven type 2 diabetic patients with metabolic syndrome and on insulin were assessed by a paired analysis before and 6 months after addition of metformin as combination therapy to evaluate the impact of the association on glycemic control, blood pressure, and lipid profile. This was a historical cohort study in which the files of type 2 diabetic patients with metabolic syndrome on insulin were reviewed. The body mass index (BMI), waist circumference, lipid profile, A1C level, fasting blood glucose level, daily dose of NPH insulin, systolic blood pressure, and diastolic blood pressure were assessed in each patient before the start of metformin and 6 months after the initiation of combination therapy. Glycemic control significantly improved (P < 0.001) after the addition of metformin (1404.4 ± 565.5 mg/day), with 14% of the 57 patients reaching A1C levels up to 7%, and 53% reaching values up to 8%. There was a statistically significant reduction (P < 0.05) of total cholesterol (229.0 ± 29.5 to 214.2 ± 25.0 mg/dL), BMI (30.7 ± 5.4 to 29.0 ± 4.0 kg/m²), waist circumference (124.6 ± 11.7 to 117.3 ± 9.3 cm), and daily necessity of insulin. The reduction of total cholesterol occurred independently of the reductions of A1C (9.65 ± 1.03 to 8.18 ± 1.01%) and BMI and the reduction of BMI and WC did not interfere with the improvement of A1C. In conclusion, our study showed the efficacy of the administration of metformin and insulin simultaneously without negative effects. No changes were detected in HDL-cholesterol or blood pressure.
Resumo:
Veterinary Health Services are following in many areas the practices and medical direction of human medicine and health services. They are reaching for improved efficiency, quality and precision. Competitive position may be improved and productivity increased by specializing and focusing efforts at the practice. This thesis focuses in small animal practices and their needs for ERP (Enterprise Resource Planning) systems in Germany. As a result requirements for ERP solution supporting knowledge management in the small animal practice is presented. Veterinary Health Services is knowledge-intensive business, where written information and tacit knowledge is increasingly bound together with deepening expertise and specialization. Veterinarian is even legally obliged to develop and maintain her professional skills. The current ERP solutions concentrate in the treatment process of veterinary practice. Customer relationship management is left aside. As the competitive situation is getting tighter in veterinary services also the customer relationship management needs to get into the focus and interest to the wider network support in knowledge sharing should take steps forward. Taking into account the requirement of continuous development of professional skills ERP system at the veterinary practice should also be seen as knowledge management tool. It should provide the possibility to create, store, share and use knowledge. The study is conducted first by studying the AS-IS situation of ERP use and market in veterinary health services and then drawing the requirements of TO-BE situation by studying literature and the results of semi qualitative study conducted for German veterinary practices. A group of veterinarians were interviewed, market and network analysis was done and the understanding of market was deepened in two veterinary conferences in Germany. This theses work is requested by Finnish software company Finnish Net Solutions, which is the leading supplier of Veterinary Practice Management software in Finland. The company plans to expand to European market with Cloud based service. Target of the theses is to create understanding of the requirements of German veterinary market to develop ERP solution supporting Knowledge Management in Veterinary Practice.
Resumo:
The dependence of sweat composition and acidity on sweating rate (SR) suggests that the lower SR in children compared to adults may be accompanied by a higher level of sweat lactate (Lac-) and ammonia (NH3) and a lower sweat pH. Four groups (15 girls, 18 boys, 8 women, 8 men) cycled in the heat (42ºC, 20% relative humidity) at 50% VO2max for two 20-min bouts with a 10-min rest before bout 1 and between bouts. Sweat was collected into plastic bags attached to the subject's lower back. During bout 1, sweat from girls and boys had higher Lac- concentrations (23.6 ± 1.2 and 21.2 ± 1.7 mM; P < 0.05) than sweat from women and men (18.2 ± 1.9 and 14.8 ± 1.6 mM, respectively), but Lac- was weakly associated with SR (P > 0.05; r = -0.27). Sweat Lac- concentration dropped during exercise bout 2, reaching similar levels among all groups (overall mean = 13.7 ± 0.4 mM). Children had a higher sweat NH3 than adults during bout 1 (girls = 4.2 ± 0.4, boys = 4.6 ± 0.6, women = 2.7 ± 0.2, and men = 3.0 ± 0.2 mM; P < 0.05). This difference persisted through bout 2 only in females. On average, children's sweat pH was lower than that of adults (mean ± SEM, girls = 5.4 ± 0.2, boys = 5.0 ± 0.1, women = 6.2 ± 0.5, and men = 6.2 ± 0.4 for bout 1, and girls = 5.4 ± 0.2, boys = 6.5 ± 0.5, women = 5.2 ± 0.2, and men = 6.9 ± 0.4 for bout 2). This may have favored NH3 transport from plasma to sweat as accounted for by a significant correlation between sweat NH3 and H+ (r = 0.56). Blood pH increased from rest (mean ± SEM; 7.3 ± 0.02) to the end of exercise (7.4 ± 0.01) without differences among groups. These results, however, are representative of sweat induced by moderate exercise in the absence of acidosis.
Resumo:
Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI) 21d = 51.02 ± 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an important event associated with the increased rate of cell mitosis promoted by TSH and indicates that insulin and IGF-I are important co-mitogenic factors in vivo, possibly acting through the activation of IRS-1.
Resumo:
Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.
Resumo:
In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.
Resumo:
Sleep disturbances have far-reaching effects on the neuroendocrine and immune systems and may be linked to disease manifestation. Sleep deprivation can accelerate the onset of lupus in NZB/NZWF1 mice, an animal model of severe systemic lupus erythematosus. High prolactin (PRL) concentrations are involved in the pathogenesis of systemic lupus erythematosus in human beings, as well as in NZB/NZWF1 mice. We hypothesized that PRL could be involved in the earlier onset of the disease in sleep-deprived NZB/NZWF1 mice. We also investigated its binding to dopaminergic receptors, since PRL secretion is mainly controlled by dopamine. Female NZB/NZWF1 mice aged 9 weeks were deprived of sleep using the multiple platform method. Blood samples were taken for the determination of PRL concentrations and quantitative receptor autoradiography was used to map binding of the tritiated dopaminergic receptor ligands [³H]-SCH23390, [³H]-raclopride and [³H]-WIN35,428 to D1 and D2 dopaminergic receptors and dopamine transporter sites throughout the brain, respectively. Sleep deprivation induced a significant decrease in plasma PRL secretion (2.58 ± 0.95 ng/mL) compared with the control group (25.25 ± 9.18 ng/mL). The binding to D1 and D2 binding sites was not significantly affected by sleep deprivation; however, dopamine transporter binding was significantly increased in subdivisions of the caudate-putamen - posterior (16.52 ± 0.5 vs 14.44 ± 0.6), dorsolateral (18.84 ± 0.7 vs 15.97 ± 0.7) and ventrolateral (24.99 ± 0.5 vs 22.54 ± 0.7 µCi/g), in the sleep-deprived mice when compared to the control group. These results suggest that PRL is not the main mechanism involved in the earlier onset of the disease observed in sleep-deprived NZB/NZWF1 mice and the reduction of PRL concentrations after sleep deprivation may be mediated by modifications in the dopamine transporter sites of the caudate-putamen.
Resumo:
Transforming growth factor-β1 (TGF-β1) plays an important role in the fibrogenic process in the liver. The aim of the present study was to explore the action of TGF-β1 on fibronectin expression in rat hepatic stem-like cells and the underlying mechanisms. The level of fibronectin expression was determined in hepatic stem-like cells (WB cells) before and after TGF-β1 stimulation by RT-PCR and Western blot methods. Using immunogold transmission electron microscopy and the Western blot method, we observed the result of the expression and the distribution of cAMP, phosphorylated Smad3 and Smad7 before and after TGF-β1 treatment. The levels of fibronectin expression in both mRNA and protein increased 4- to 5-fold after TGF-β1 stimulation, reaching an optimum level after 8 h and then gradually falling back. Similarly, TGF-β1 stimulation resulted in an increase of cAMP in WB cells, peaking at 8 h. After treatment with TGF-β1 for 24 h, the expression of cAMP gradually decreased. In addition, we found that TGF-β1 treatment also contributed to the increased expression and to changes in cellular distribution of phosphorylated Smad3 (translocation from the cytoplasm to the nucleus) and Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. The present study demonstrates that TGF-β is involved in the fibrogenic process in hepatic stem cells through up-regulation of fibronectin expression, and the mechanisms underlying this process may be associated with the activation of cAMP and Smad pathways.
Resumo:
Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM) on plasma cytokine release in 10 healthy subjects (age: 26.1 ± 1.2 years, BMI: 23.8 ± 3.6 kg/m²). LHM was performed applying continuous positive airway pressure (CPAP) with a face mask, increased by 3-cmH2O steps up to 20 cmH2O every 5 breaths. At CPAP 20 cmH2O, an inspiratory pressure of 20 cmH2O above CPAP was applied, reaching an airway pressure of 40 cmH2O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05) all measured cytokines (TNF-α: 1.2 ± 3.8 vs 6.4 ± 8.6 pg/mL; IL-1β: 4.9 ± 15.6 vs 22.4 ± 28.4 pg/mL; IL-6: 1.4 ± 3.3 vs 6.5 ± 5.6 pg/mL; IL-8: 13.2 ± 8.8 vs 33.4 ± 26.4 pg/mL; IL-10: 3.3 ± 3.3 vs 7.7 ± 6.5 pg/mL, and IL-12: 3.1 ± 7.9 vs 9 ± 11.4 pg/mL), which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6) and anti-inflammatory (IL-10) cytokines (r = 0.89, P = 0.004). LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects.
Resumo:
Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.
Resumo:
Lipopolysaccharide (LPS) activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R) and smooth (S) forms signal through Toll-like receptor 4 (TLR4), but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS) and nitric oxide (NO) generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.
Resumo:
It is well known that eosinophilia is a key pathogenetic component of toxocariasis. The objective of the present study was to determine if there is an association between peritoneal and blood eosinophil influx, mast cell hyperplasia and leukotriene B4 (LTB4) production after Toxocara canis infection. Oral inoculation of 56-day-old Wistar rats (N = 5-7 per group) with 1000 embryonated eggs containing third-stage (L3) T. canis larvae led to a robust accumulation of total leukocytes in blood beginning on day 3 and peaking on day 18, mainly characterized by eosinophils and accompanied by higher serum LTB4 levels. At that time, we also noted increased eosinophil numbers in the peritoneal cavity. In addition, we observed increased peritoneal mast cell number in the peritoneal cavity, which correlated with the time course of eosinophilia during toxocariasis. We also demonstrated that mast cell hyperplasia in the intestines and lungs began soon after the T. canis larvae migrated to these compartments, reaching maximal levels on day 24, which correlated with the complete elimination of the parasite. Therefore, mast cells appear to be involved in peritoneal and blood eosinophil infiltration through an LTB4-dependent mechanism following T. canis infection in rats. Our data also demonstrate a tight association between larval migratory stages and intestinal and pulmonary mast cell hyperplasia in the toxocariasis model.
Resumo:
Hypoxemia is a frequent complication after coronary artery bypass graft (CABG) with cardiopulmonary bypass (CPB), usually attributed to atelectasis. Using computed tomography (CT), we investigated postoperative pulmonary alterations and their impact on blood oxygenation. Eighteen non-hypoxemic patients (15 men and 3 women) with normal cardiac function scheduled for CABG under CPB were studied. Hemodynamic measurements and blood samples were obtained before surgery, after intubation, after CPB, at admission to the intensive care unit, and 12, 24, and 48 h after surgery. Pre- and postoperative volumetric thoracic CT scans were acquired under apnea conditions after a spontaneous expiration. Data were analyzed by the paired Student t-test and one-way repeated measures analysis of variance. Mean age was 63 ± 9 years. The PaO2/FiO2 ratio was significantly reduced after anesthesia induction, reaching its nadir after CPB and partially improving 12 h after surgery. Compared to preoperative CT, there was a 31% postoperative reduction in pulmonary gas volume (P < 0.001) while tissue volume increased by 19% (P < 0.001). Non-aerated lung increased by 253 ± 97 g (P < 0.001), from 3 to 27%, after surgery and poorly aerated lung by 72 ± 68 g (P < 0.001), from 24 to 27%, while normally aerated lung was reduced by 147 ± 119 g (P < 0.001), from 72 to 46%. No correlations (Pearson) were observed between PaO2/FiO2 ratio or shunt fraction at 24 h postoperatively and postoperative lung alterations. The data show that lung structure is profoundly modified after CABG with CPB. Taken together, multiple changes occurring in the lungs contribute to postoperative hypoxemia rather than atelectasis alone.
Resumo:
Enrichment of culture media with amino acids improves embryo development. However, little is known about the specific action of each amino acid during embryogenesis. The present study was undertaken to examine the effect of L-glutamine (Gln) and tryptophan (Trp) on mouse embryo hatching, expansion and viability in vitro. Blastocysts were collected from 6- to 8-week-old female BALB/c mice (N = 30) and cultured in M2 medium containing either 0.125, 0.25 or 0.5 mM Trp, 1 mM Gln, or M2 alone. Gln significantly increased (100%; P < 0.05) blastocyst hatching at 24 h compared to M2 alone or Trp; moreover, Trp inhibited blastocyst hatching when compared to M2 alone (P < 0.05) at 72 h. In contrast, the percentage of embryos reaching the state of expanded blastocyst at 48 h was significantly higher in medium with 1 mM Gln (66.6%; P < 0.05) or with 0.125 mM Trp (61.1%; P < 0.05). Unexpectedly, Trp increased the percentage of degenerated blastocysts after 48 h (67.7%; P < 0.05), while Gln preserved blastocyst viability. These results suggest that Gln may enhance blastocyst hatching, expansion and viability in vitro.
Resumo:
The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA) axis, driven by a neural signal originating in the paraventricular nucleus (PVN). Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.