992 resultados para Rate Acceleration
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.
Resumo:
Collision cross sections are calculated using the R-matrix method for excitations between the three lowest LS states for Na-like Cu ion. The complex resonance structures are investigated. The collision rate coefficients have been calculated assuming a Maxwellian distribution of electron-impact energies. The results of the collision cross sections are in good agreement with those of the other theory.
Resumo:
The electrocatalytic oxidation of NADH by ferrocene derivatives and the influence of complexation with beta-cyclodextrin (beta-CD) were investigated at a microdisk electrode in a buffer solution. The cyclic voltammetric behavior of the ferrocene derivatives on the microdisk electrode was used to determine the electron-transfer rate constant from NADH to the ferricinium species. The heterogeneous rate constants and the diffusion coefficient of ferrocene derivatives were determined with the microdisk electrode. The effect of temperature and pH on the electrocatalytic oxidation of NADH were assessed.
Resumo:
The aqueous complexation of lanthanide ions with citrate in pH 7.4 solution has been investigated with use of the lanthanide-induced shift and paramagnetic relaxation rate enhancement methods. The results show that citrate coordinates via hydroxyl and central carboxylate groups with lanthanide ions and forms 1:2 (Ln/cit) isostructural complexes through the lanthanide series. A new possible coordination geometry deduced from our experimental data is suggested and discussed.
Resumo:
A strong strain-rate and temperature dependence was observed for the fracture toughness of phenolphthalein polyether ketone (PEK-C). Two separate crack-blunting mechanisms have been proposed to account for the fracture-toughness data. The first mechanism involves thermal blunting due to adiabatic heating at the crack tip for the high temperatures studied. In the high-temperature range, thermal blunting increases the fracture toughness corresponding to an effectively higher test temperature. However, in the low-temperature range, the adiabatic temperature rise is insufficient to cause softening and Jic increases with increasing temperature owing to viscoelastic losses associated with the p-relaxation there. The second mechanism involves plastic blunting due to shear yield/flow processes at the crack tip and this takes place at slow strain testing of the single-edge notched bending (SENB) samples. The temperature and strain-rate dependence of the plastic zone size may also be responsible for the temperature and strain-rate dependence of fracture toughness.
Resumo:
The rate/temperature dependence of yield stress, tensile modulus and crack opening displacement of phenolphthalein poly(ether ketone) (PEK-C) has been investigated. The rate/temperature dependence of crack opening displacement and the correlation establis
Resumo:
The rapid scan spectrometer was used to determine the heterogeneous electron transfer rate parameters for the oxidation of Biliverdin in DMF by single potential step thin layer spectroelectrochemical techniques and yielded an average formal heterogeneous electron transfer rate constant K(s, h)0' = 2.45 (+/-0.12) x 10(-4) cm s-1, electrochemical transfer coefficient alpha = 0.694+/-0.008. The oxidation process of Biliverdin was also studied and the formal potential E0 = 0.637 V (vs. Ag/AgCl) was obtained.
Resumo:
The possibility of determining the rate constant of a catalytic reaction using a parallel incident spectroelectrochemical cell was investigated in this work. Various spectroelectrochemical techniques were examined, including single-potential-step chronoabsorptometry, single-potential-step open-circuit relaxation chronoabsorptometry and double-potential-step chronoabsorptometry. The values determined for the kinetics of the ferrocyanide-ascorbic acid system are in agreement with the reported values. The parallel incident method is much more sensitive than the normal transmission method and can be applied to systems which have smaller molar absorptivities, larger rate constants or lower concentrations.
Resumo:
The at constants of catalytic reaction of ferrocyanide ascorbic acid and ferro cyanide histidine system were determined by transmitted spectroelectrochemistry using a group of cyclindrical microelectrodes, It is the first time to find that the reaction can still be considered as the pseudo first order reaction when tilt concentration of ascorbic acid or histidine is close to and even slightly lower than the concentration of ferrocyanide. The determined rate constants are in agreement with the reported values, A reasonable explanation was given,
Resumo:
This study examined the effects of storage time and cryoprotectant concentrations on the post-thaw sperm of red seabream, Pagrus major. Sperm treated with 12%, 15%, 18% and 21% DMSO were cryopreserved for 10, 30, 60 and 360 days, and fertilization and hatching rates were analysed. For all groups, there were no differences in the fertilization rates and hatching rates between sperm cryopreserved for < 60 days and fresh sperm (98.8 +/- 0.8%, 96.4 +/- 1.3%). However, for sperm cryopreserved for 360 days, both fertilization rates (88.6 +/- 3.0% to 7.0 +/- 1.9%) and hatching rates (79.4 +/- 7.2% to 3.3 +/- 0.8%) decreased drastically. Furthermore, the cryoprotectant concentrations affected sperm quality significantly (P < 0.05). When cryopreserved for 360 days, sperm treated with 15% DMSO obtained the best results compared with other concentrations. We suggest that 15% DMSO may be an effective cryoprotectant for long-term sperm cryopreservation of red seabream.
Resumo:
Tank cultivation of marine macroalgae involves air-agitation of the algal biomass and intermittent light conditions, i.e. periodic, short light exposure of the thalli in the range of 10 s at the water surface followed by plunging to low light or darkness at the tank bottom and recirculation back to the surface in the range of 1-2 min. Open questions relate to effects of surface irradiance on growth rate and yield in such tumble cultures and the possibility of chronic photoinhibition in full sunlight. A specially constructed shallow-depth tank combined with a dark tank allowed fast circulation times of approximately 5 s, at a density of 4.2 kg fresh weight (FW) m(-2) s(-1). Growth rate and yield of the red alga Palmaria palmata increased over a wide range of irradiances, with no signs of chronic photoinhibition, up to a growth-saturating irradiance of approximately 1600 mumol m(-2) s(-1) in yellowish light supplied by a sodium high pressure lamp at 16 h light per day. Maximum growth rate ranged at 12% FW d(-1), and maximum yield at 609 g FW m(-2) d(-1). This shows that high growth rates of individual thalli may be reached in a dense tumble culture, if high surface irradiances and short circulation times are supplied. Another aspect of intermittent light relates to possible changes of basic growth kinetics, as compared to continuous light. For this purpose on-line measurements of growth rate were performed with a daily light reduction by 50% in light-dark cycles of 1, 2 or 3 min duration during the daily light period. Growth rates at 10degreesC and 50 mumol photon m(-2) s- 1 dropped in all three intermittent light regimes during both the main light and dark periods and reached with all three periodicities approximately 50% of the control, with no apparent changes in basic growth kinetics, as compared to continuous light.
Resumo:
Bagnold-type bed-load equations are widely used for the determination of sediment transport rate in marine environments. The accuracy of these equations depends upon the definition of the coefficient k(1) in the equations, which is a function of particle size. Hardisty (1983) has attempted to establish the relationship between k(1) and particle size, but there is an error in his analytical result. Our reanalysis of the original flume data results in new formulae for the coefficient. Furthermore, we found that the k(1) values should be derived using u(1) and u(1cr) data; the use of the vertical mean velocity in flumes to replace u(1) will lead to considerably higher k(1) values and overestimation of sediment transport rates.
Resumo:
Well-dated, high-resolution records of planktonic foraminifera and oxygen isotopes from two sediment cores, A7 and E017, in the middle Okinawa Trough reveal strong and rapid millennial-scale climate changes since similar to 18 to 17 thousand years before present (kyr B.P.). Sedimentation rate shows a sudden drop at similar to 11.2 cal. kyr B.P. due to a rapid rise of sea level after the Younger Dryas (YD) and consequently submergence of the large continental shelf on the East China Sea (ECS) and the retreat of the estuary providing sediment to the basin. During the last deglaciation, the relative abundance of warm and cold species of planktonic foraminifera fluctuates strongly, consistent with the timing of sea surface temperature (SST) variations determined from Mg/Ca measurements of planktonic foraminifera from one of the two cores. These fluctuations are coeval with climate variation recorded in the Greenland ice cores and North Atlantic sediments, namely Heinrich event 1 (H1), Bolling-Allerod (B/A) and YD events. At about 9.4 kyr B.P., a sudden change in the relative abundance of shallow to deep planktonic species probably indicates a sudden strengthening of the Kuroshio Current in the Okinawa Trough, which was synchronous with a rapid sea-level rise at 9.5-9.2 kyr B.P. in the ECS, Yellow Sea (YS) and South China Sea (SCS). The abundance of planktonic foraminiferal species, together with Mg/Ca based SST, exhibits millennial-scale oscillations during the Holocene, with 7 cold events (at about 1.7, 2.3-4.6, 6.2, 7.3, 8.2, 9.6, 10.6 cal. kyr BP) superimposed on a Holocene warming trend. This Holocene trend, together with centennial-scale SST variations superimposed on the last deglacial trend, suggests that both high and low latitude influences affected the climatology of the Okinawa Trough. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the reclaimed land in the Hangzhou Bay, China. The hydrodynamic environment in this area is solved by use of a long wave model, which gives the 2D-velocity field and considers bathymetric changes due to fine sediment deposition. The expression is proved convenient to use in engineering practice, and the predicted deposition rate agrees with the annual data available from field measurements from the first year to the third year after the construction of the long groin as a reclaiming method.