917 resultados para Rafael, 1483-1520


Relevância:

10.00% 10.00%

Publicador:

Resumo:

应用流式细胞仪分离赤麂的1,Yl,Y2染色体,通过简并寡核苷酸引物聚合 酶链武反应(DOP-PCR)增加模板数量.用人的性别决定基因HMG框内设计1对引 物进行PCR扩增.在雄性赤麂Y2染色体DOP-PCR产物中扩增出与人SRY基因同源 的Sly基因片段,经克隆测序后,初步证明赤麂Y2染色体是真正的Y染色体,同时对 赤麂s珂基因进行了初步定位.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model based compensation schemes are a powerful approach for noise robust speech recognition. Recently there have been a number of investigations into adaptive training, and estimating the noise models used for model adaptation. This paper examines the use of EM-based schemes for both canonical models and noise estimation, including discriminative adaptive training. One issue that arises when estimating the noise model is a mismatch between the noise estimation approximation and final model compensation scheme. This paper proposes FA-style compensation where this mismatch is eliminated, though at the expense of a sensitivity to the initial noise estimates. EM-based discriminative adaptive training is evaluated on in-car and Aurora4 tasks. FA-style compensation is then evaluated in an incremental mode on the in-car task. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many realistic scenarios, there are multiple factors that affect the clean speech signal. In this work approaches to handling two such factors, speaker and background noise differences, simultaneously are described. A new adaptation scheme is proposed. Here the acoustic models are first adapted to the target speaker via an MLLR transform. This is followed by adaptation to the target noise environment via model-based vector Taylor series (VTS) compensation. These speaker and noise transforms are jointly estimated, using maximum likelihood. Experiments on the AURORA4 task demonstrate that this adaptation scheme provides improved performance over VTS-based noise adaptation. In addition, this framework enables the speech and noise to be factorised, allowing the speaker transform estimated in one noise condition to be successfully used in a different noise condition. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most HMM-based TTS systems use a hard voiced/unvoiced classification to produce a discontinuous F0 signal which is used for the generation of the source-excitation. When a mixed source excitation is used, this decision can be based on two different sources of information: the state-specific MSD-prior of the F0 models, and/or the frame-specific features generated by the aperiodicity model. This paper examines the meaning of these variables in the synthesis process, their interaction, and how they affect the perceived quality of the generated speech The results of several perceptual experiments show that when using mixed excitation, subjects consistently prefer samples with very few or no false unvoiced errors, whereas a reduction in the rate of false voiced errors does not produce any perceptual improvement. This suggests that rather than using any form of hard voiced/unvoiced classification, e.g., the MSD-prior, it is better for synthesis to use a continuous F0 signal and rely on the frame-level soft voiced/unvoiced decision of the aperiodicity model. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One important issue in designing state-of-the-art LVCSR systems is the choice of acoustic units. Context dependent (CD) phones remain the dominant form of acoustic units. They can capture the co-articulatory effect in speech via explicit modelling. However, for other more complicated phonological processes, they rely on the implicit modelling ability of the underlying statistical models. Alternatively, it is possible to construct acoustic models based on higher level linguistic units, for example, syllables, to explicitly capture these complex patterns. When sufficient training data is available, this approach may show an advantage over implicit acoustic modelling. In this paper a wide range of acoustic units are investigated to improve LVCSR system performance. Significant error rate gains up to 7.1% relative (0.8% abs.) were obtained on a state-of-the-art Mandarin Chinese broadcast audio recognition task using word and syllable position dependent triphone and quinphone models. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For speech recognition, mismatches between training and testing for speaker and noise are normally handled separately. The work presented in this paper aims at jointly applying speaker adaptation and model-based noise compensation by embedding speaker adaptation as part of the noise mismatch function. The proposed method gives a faster and more optimum adaptation compared to compensating for these two factors separately. It is also more consistent with respect to the basic assumptions of speaker and noise adaptation. Experimental results show significant and consistent gains from the proposed method. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental frequency, or F0 is critical for high quality speech synthesis in HMM based speech synthesis. Traditionally, F0 values are considered to depend on a binary voicing decision such that they are continuous in voiced regions and undefined in unvoiced regions. Multi-space distribution HMM (MSDHMM) has been used for modelling the discontinuous F0. Recently, a continuous F0 modelling framework has been proposed and shown to be effective, where continuous F0 observations are assumed to always exist and voicing labels are explicitly modelled by an independent stream. In this paper, a refined continuous F0 modelling approach is proposed. Here, F0 values are assumed to be dependent on voicing labels and both are jointly modelled in a single stream. Due to the enforced dependency, the new method can effectively reduce the voicing classification error. Subjective listening tests also demonstrate that the new approach can yield significant improvements on the naturalness of the synthesised speech. A dynamic random unvoiced F0 generation method is also investigated. Experiments show that it has significant effect on the quality of synthesised speech. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discriminative mapping transforms (DMTs) is an approach to robustly adding discriminative training to unsupervised linear adaptation transforms. In unsupervised adaptation DMTs are more robust to unreliable transcriptions than directly estimating adaptation transforms in a discriminative fashion. They were previously proposed for use with MLLR transforms with the associated need to explicitly transform the model parameters. In this work the DMT is extended to CMLLR transforms. As these operate in the feature space, it is only necessary to apply a different linear transform at the front-end rather than modifying the model parameters. This is useful for rapidly changing speakers/environments. The performance of DMTs with CMLLR was evaluated on the WSJ 20k task. Experimental results show that DMTs based on constrained linear transforms yield 3% to 6% relative gain over MLE transforms in unsupervised speaker adaptation. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently there has been interest in structured discriminative models for speech recognition. In these models sentence posteriors are directly modelled, given a set of features extracted from the observation sequence, and hypothesised word sequence. In previous work these discriminative models have been combined with features derived from generative models for noise-robust speech recognition for continuous digits. This paper extends this work to medium to large vocabulary tasks. The form of the score-space extracted using the generative models, and parameter tying of the discriminative model, are both discussed. Update formulae for both conditional maximum likelihood and minimum Bayes' risk training are described. Experimental results are presented on small and medium to large vocabulary noise-corrupted speech recognition tasks: AURORA 2 and 4. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard, ad-hoc stopping criteria used in decision tree-based context clustering are known to be sub-optimal and require parameters to be tuned. This paper proposes a new approach for decision tree-based context clustering based on cross validation and hierarchical priors. Combination of cross validation and hierarchical priors within decision tree-based context clustering offers better model selection and more robust parameter estimation than conventional approaches, with no tuning parameters. Experimental results on HMM-based speech synthesis show that the proposed approach achieved significant improvements in naturalness of synthesized speech over the conventional approaches. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present Poisson sum series representations for α-stable (αS) random variables and a-stable processes, in particular concentrating on continuous-time autoregressive (CAR) models driven by α-stable Lévy processes. Our representations aim to provide a conditionally Gaussian framework, which will allow parameter estimation using Rao-Blackwellised versions of state of the art Bayesian computational methods such as particle filters and Markov chain Monte Carlo (MCMC). To overcome the issues due to truncation of the series, novel residual approximations are developed. Simulations demonstrate the potential of these Poisson sum representations for inference in otherwise intractable α-stable models. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structured precision modelling is an important approach to improve the intra-frame correlation modelling of the standard HMM, where Gaussian mixture model with diagonal covariance are used. Previous work has all been focused on direct structured representation of the precision matrices. In this paper, a new framework is proposed, where the structure of the Cholesky square root of the precision matrix is investigated, referred to as Cholesky Basis Superposition (CBS). Each Cholesky matrix associated with a particular Gaussian distribution is represented as a linear combination of a set of Gaussian independent basis upper-triangular matrices. Efficient optimization methods are derived for both combination weights and basis matrices. Experiments on a Chinese dictation task showed that the proposed approach can significantly outperformed the direct structured precision modelling with similar number of parameters as well as full covariance modelling. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaculture is the fastest-growing food production sector globally, with production projected to double within the next 15–20 years. Future growth of aquaculture is essential to providing sustainable supplies of fish in national, regional and global fish food systems; creating jobs; and maintaining fish at affordable levels for resource-poor consumers. To ensure that the anticipated growth of aquaculture remains both economically and ecologically sustainable, we need to better understand the likely patterns of growth, as well as the opportunities and challenges, that these trends present. This knowledge will enable us to better prioritize investments that will help ensure the sustainable development of the sector. In Indonesia, WorldFish and partners have applied a unique methodology to evaluate growth trajectories for aquaculture under various scenarios, as well as the opportunities and challenges these represent. Indonesia is currently the fourth largest aquaculture producer globally, and the sector needs to grow to meet future fish demand. The study overlapped economic and environmental models with quantitative and participatory approaches to understand the future of aquaculture in Indonesia. Such analyses, while not definitive, have provided new understanding of the future supply and demand for seafood in Indonesia stretching to 2030. The learning from this research provides a foundation for future interventions in Indonesian fish food systems, as well as a suite of methodologies that can be applied more widely for insightful analyses of aquaculture growth trajectories in other countries or regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.