978 resultados para Radiation doses
Resumo:
Ractopamine (RCT) is a phenethanolamine member of the family of beta-adrenergic agonists (beta-agonists), This class of compounds have become notable for their properties of enhancing the growth rates of farm animal species but are not licensed for use in Europe. An ELISA procedure employing a polyclonal antibody raised in a goat was developed to detect RCT residues in bovine urine samples, The assay had a high sensitivity (calibration curve mid-point of 22 pg per well), allowing the analysis of urine samples without the need for sample clean-up. In addition, an LC-MS-MS confirmatory procedure was developed which was able to act as a confirmatory procedure for the ELISA results. Four calves were orally treated with RCT (0.1 mg kg(-1) body mass for 17 d) and urine samples collected were assayed by both analytical procedures. It was observed that RCT residues were excreted mainly in the form of glucuronides and deconjugation could be achieved using two different sources of the enzyme beta-glucuronidase (Helix pomatia and Escherichia coli), High concentrations of RCT residues were found throughout the medication period (44-473 ng ml(-1); LC-MS-MS data) and remained present for several days following removal of the drug from the diet, RCT residues were no longer detectable 2 weeks after withdrawal, Good agreement (r(2) = 0.73) was achieved between the ELISA and LC-MS-MS results, especially when sample deconjugation was applied to the urine samples for both sets of analyses, The results show that an effective screening and confirmatory system was devised to detect RCT residues in urine samples taken during treatment and close to withdrawal, However, alternative matrices may have to be selected to allow the illegal use of the substance to be detected following prolonged withdrawal times.
Resumo:
Clenbuterol (CBL) can be used legally in the treatment of respiratory diseases and illegally as a growth promoter in animals, Liver and eye have previously been shown to be effective matrices for the detection of residual concentrations of the drug.
Resumo:
The desorption of oligonucleotides by 3 mu m laser irradiation has been studied by laser induced fluorescence imaging of the resulting gas phase plumes. Fitting of the plume data has been achieved by using a modified Maxwell Boltzmann distribution which incorporates a range of stream velocities. Spatial density profiles, velocities and temperature variation have been determined from these fits indicating that the oligonucleotide plume only achieves a partial thermal relaxation. This laser desorption technique may provide a means of overcoming the limited mass range of gas phase biomolecules available from thermal evaporation techniques.
Optical source model for the 23.2-23.6 nm radiation from the multielement germanium soft X-ray laser
Resumo:
Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The spatial coherence of a nanosecond pulsed germanium collisionally excited x-ray laser is measured experimentally for three target configurations. The diagnostic is based on Young's slit interference fringes with a dispersing element to resolve the 23.2- and 23.6-nm spectral lines. Target configurations include a double-slab target, known as the injector, and geometries in which the injector image is image relayed to seed either an additional single-slab target or a second double-slab target. A special feature of this study is the observation of the change in the apparent source size with angle of refraction across the diverging laser beam. Source sizes derived with a Gaussian source model decrease from 44 mu m for the injector target by a variable factor of as much as 2, according to target configuration, for beams leaving the additional amplifiers after strong refraction in the plasma. (C) 1998 Optical Society of America [S0740-3224(98)00810-8].
Resumo:
The time dependence of the spatial coherence of the combined spectral lines at 23.2 and 23.6 nm from the Ge XXIII collisionally pumped soft-x-ray laser with a double-slab target is examined within a single nanosecond pulse by use of Young's interference fringes and a streak camera. High source intensity is linked with low spatial coherence and vice verse. Calculations of the source intensity, size, and position have also been made; these calculations refer to a single-slab source. Comparison between the observed and calculated intensities, and of the source sizes both calculated and derived from the Young's fringes by interpretation with a Gaussian model of source emission, show good agreement in general trends. (C) 1998 Optical Society of America [S0740-3224(98)01905-5].
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.
STUDY OF THE DYNAMICS OF ABLATIVE IMPLOSIONS DRIVEN BY 0.53 MU-M LASER-RADIATION USING X-RADIOGRAPHY
Resumo:
A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).
Resumo:
Selective enhancement (> 10(3)) of harmonics extending to the water window (similar to 4 nm) generated in an argon gas filled straight bore capillary waveguide is demonstrated. This enhancement is in good agreement with modeling which indicates that multimode quasi-phase-matching is achieved by rapid axial intensity modulations caused by beating between the fundamental and higher-order capillary modes. Substantial pulse energies (> 10 nJ per pulse per harmonic order) at wavelengths beyond the carbon K edge (similar to 4.37 nm, similar to 284 eV) up to similar to 360 eV are observed from argon ions for the first time.
Resumo:
We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).
Resumo:
We present images of the source of extreme ultraviolet (XUV) harmonic emission at a wavelength of 220 Angstrom from the interaction of a 20 TW, 1.053 mu m Nd:glass laser beam focused to intensities up to 4x10(18) W cm(-2) onto a solid target. From these measurements we determine an upper limit to the source size and brightness of the harmonic emission to show its efficacy as a novel source of short-pulse, coherent XUV radiation. We also demonstrate the empirical scaling of the harmonic generation efficiency with irradiance up to 10(19) W mu m(2) cm(-2), and extrapolate to estimate the possible source brightness at higher irradiances. These source brightnesses are compared to those available from an x-ray laser system. (C) 1997 American Institute of Physics.