936 resultados para RNA HELICASES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A virus-based vector was used for the transient expression of the alfalfa mosaic virus coat protein (CP) gene in protoplasts and plants. The accumulation of wild-type CP conferred strong protection against subsequent alfalfa mosaic virus infection, enabling the efficacy of CP mutants to be determined without developing transgenic plants. Expression of the CP mRNA alone without CP accumulation conferred weaker protection against infection. The activity of the N-terminal mutant CPs in protection did not correlate with their activities in genome activation. The activity of a C-terminal mutant suggested that encapsidation did not have a role in protection. Our results indicate that interaction of the CP with alfalfa mosaic virus RNA is not important in protection, thereby leaving open the possibility that interactions with host factors lead to protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interferon-inducible double-stranded (ds) RNA-activated protein kinase (PKR) exhibits antiviral, anticellular, and antitumor activities. The mechanisms of its enzymatic activation by autophosphorylation and of the observed transdominant inhibitory phenotype of enzymatically inactive mutants have invoked PKR dimerization. Here we present direct evidence in support of PKR-PKR interaction. We show that radiolabeled PKR can specifically interact with matrix-bound unlabeled PKR in the absence of dsRNA. The self-association activity resides, in part, in the N-terminal region of 170 residues, which also constitutes the dsRNA-binding domain (DRBD). DRBD can bind to matrix-bound PKR or to matrix-bound DRBD. Dimerization of DRBD was directly demonstrated by chemical crosslinking. Affinity chromatography and electrophoretic mobility supershift assays demonstrated that mutants that fail to bind dsRNA can still exhibit protein-protein interaction. The PKR-PKR interaction could also be observed in a two-hybrid transcriptional activation assay in mammalian cells and consequently is likely to be an important feature of PKR activity in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If RNA editing could be rationally directed to mutated RNA sequences, genetic diseases caused by certain base substitutions could be treated. Here we use a synthetic complementary RNA oligonucleotide to direct the correction of a premature stop codon mutation in dystrophin RNA. The complementary RNA oligonucleotide was hybridized to a premature stop codon and the hybrid was treated with nuclear extracts containing the cellular enzyme double-stranded RNA adenosine deaminase. When the treated RNAs were translated in vitro, a dramatic increase in expression of a downstream luciferase coding region was observed. The cDNA sequence data are consistent with deamination of the adenosine in the UAG stop codon to inosine by double-stranded RNA adenosine deaminase. Injection of oligonucleotide-mRNA hybrids into Xenopus embryos also resulted in an increase in luciferase expression. These experiments demonstrate the principle of therapeutic RNA editing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trp RNA-binding attenuation protein of Bacillus subtilis, TRAP, regulates both transcription and translation by binding to specific transcript sequences. The optimal transcript sequences required for TRAP binding were determined by measuring complex formation between purified TRAP protein and synthetic RNAs. RNAs were tested that contained repeats of different trinucleotide sequences, with differing spacing between the repeats. A transcript containing GAG repeats separated by two-nucleotide spacers was bound most tightly. In addition, transmission electron microscopy was used to examine the structure of TRAP and the TRAP-transcript complex. TRAP was observed to be a toroid-shaped oligomer when free or when bound to either a natural or a synthetic RNA.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of human immunodeficiency virus type 1 (HIV-1) gene expression in response to Tat is dependent on an element downstream of the HIV-1 transcriptional initiation site designated the trans-activating region (TAR). TAR forms a stable stem-loop RNA structure in which a 3-nt bulge structure and a 6-nt loop structure are important for Tat activation. In the absence of Tat, the HIV-1 promoter generates so-called short or nonprocessive transcripts terminating at +60, while in the presence of Tat the synthesis of these short transcripts is markedly decreased and transcripts that extend through the 9.0-kb HIV-1 genome are synthesized. Tat effects on transcriptional elongation are likely due to alterations in the elongation properties of RNA polymerase II. In this study we demonstrated that a set of cellular cofactors that modulate the binding of the cellular protein TRP-185 to the TAR RNA loop sequences also functioned to markedly stimulate the specific binding of hypophosphorylated (IIa) and hyperphosphorylated (IIo) RNA polymerase II to TAR RNA. The concentrations of RNA polymerase II required for this interaction with TAR RNA were similar to those required to initiate in vitro transcription from the HIV-1 long terminal repeat. RNA gel retardation analysis with wild-type and mutant TAR RNAs indicated that the TAR RNA loop and bulge sequences were critical for the binding of RNA polymerase II. The addition of wild-type but not mutant Tat protein to gel retardation analysis with TAR RNA and RNA polymerase II resulted in the loss of binding of RNA polymerase II binding to TAR RNA. These results suggest that Tat may function to alter RNA polymerase II, which is paused due to its binding to HIV-1 TAR RNA with resultant stimulation of its transcriptional elongation properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A M(r) 140,000 protein has been purified from chicken lungs to apparent homogeneity. The protein binds with high affinity to a non-BNA conformation, which is most likely to the Z-DNA. The protein also has a binding site for double-stranded RNA (dsRNA). Peptide sequences from this protein show similarity to dsRNA adenosine deaminase, an enzyme that deaminates adenosine in dsRNA to form inosine. Assays for this enzyme confirm that dsRNA adenosine deaminase activity and Z-DNA binding are properties of the same molecule. The coupling of these two activities in a single molecule may indicate a distinctive mechanism of gene regulation that is, in part, dependent on DNA topology. As such, DNA topology, through its effects on the efficiency and extent of RNA editing may be important in the generation of new phenotypes during evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene product of the recently cloned mouse obese gene (ob) is important in regulating adipose tissue mass. ob RNA is expressed specifically by mouse adipocytes in vivo in each of several different fat cell depots, including brown fat. ob RNA is also expressed in cultured 3T3-442A preadipocyte cells that have been induced to differentiate. Mice with lesions of the hypothalamus, as well as mice mutant at the db locus, express a 20-fold higher level of ob RNA in adipose tissue. These data suggest that both the db gene and the hypothalamus are downstream of the ob gene in the pathway that regulates adipose tissue mass and are consistent with previous experiments suggesting that the db locus encodes the ob receptor. In db/db and lesioned mice, quantitative differences in expression level of ob RNA correlated with adipocyte lipid content. The molecules that regulate expression level of the ob gene in adipocytes probably are important in determining body weight, as are the molecules that mediate the effects of ob at its site of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviruses are known to mutate at high rates. An important source of genetic variability is recombination taking place during reverse transcription of internal regions of the two genomic RNAs. We have designed an in vitro model system, involving genetic markers carried on two RNA templates, to allow a search for individual recombination events and to score their frequency of occurrence. We show that Moloney murine leukemia virus reverse transcriptase alone promotes homologous recombination efficiently. While RNA concentration has little effect on recombination frequency, there is a clear correlation between the amount of reverse transcriptase used in the assay and the extent of recombination observed. Under conditions mimicking the in vivo situation, a rate compatible with ex vivo estimates has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deoxyribonucleic guanidine is a potential antisense agent that is generated via the replacement of the negative phosphodiester linkages of DNA [--O--(PO2-)--O--] with positively-charged guanidinium (g) linkages [--NH--C(==NH2+)--NH--]. A pentameric thymidyl deoxyribonucleic guanidine molecule [d(Tg)4T-azido] has been shown to base pair specifically to poly(rA) with an unprecedented affinity. Both double and triple strands consisting of one and two equivalents of d(Tg)4T-azido paired with one equivalent of poly(rA) are indicated by thermal denaturation experiments. At an ionic strength of 0.22, the five bases of d(Tg)4T-azido are estimated to dissociate from a double helix with poly(rA) at > 100 degrees C! The effect of ionic strength on thermal denaturation is very pronounced, with stability greatest at low ionic strengths. The method of continuous variation indicates that there is an equilibrium complex with a molar ratio of d(Tg) to r(Ap) or d(Ap) of 2:1. Based on this evidence, models of the structures of d(Tg)9T-azido bound to r(Ap)9A are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+ bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C-->G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.