979 resultados para RNA, Ribosomal, 16S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses carry more than one segment of nucleic acid into the virion particle, but retroviruses are the only known group of viruses that contain two identical (or nearly identical) copies of the RNA genome within the virion. These RNA genomes are non-covalently joined together through a process known as genomic RNA dimerization. Uniquely, the RNA dimerization of the retroviral genome is of crucial importance for efficient retroviral replication. In this article, our current understanding of the relationship between retroviral genome conformation, dimerization and replication is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimerization initiation site (DIS) stem-loop within the HIV-1 RNA genome is vital for the production of infectious virions in T-cell lines but not in primary cells. In comparison to peripheral blood mononuclear cells (PBMCs), which can support the replication of both wild type and HIV-1 DIS RNA mutants, we have found that DIS RNA mutants are up to 100 000-fold less infectious than wild-type HIV-1 in T-cell lines. We have also found that the cell-type-dependent replication of HIV-1 DIS RNA mutants is largely producer cell-dependent, with mutants displaying a greater defect in viral cDNA synthesis when viruses were not derived from PBMCs. While many examples exist of host–pathogen interplays that are mediated via proteins, analogous examples which rely on nucleic acid triggers are limited. Our data provide evidence to illustrate that primary T-lymphocytes rescue, in part, the replication of HIV-1 DIS RNA mutants through mediating the reverse transcription process in a cell-type-dependent manner. Our data also suggest the presence of a host cell factor that acts within the virus producer cells. In addition to providing an example of an RNA-mediated cell-type-dependent block to viral replication, our data also provides evidence which help to resolve the dilemma of how HIV-1 genomes with mismatched DIS sequences can recombine to generate chimeric viral RNA genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bias of A-rich codons in HIV-1 pol is thought to be a record of hypermutations in viral genomes that lack biological functions. Bioinformatic analysis predicted that A-rich sequences are generally associated with minimal local RNA structures. Using codon modifications to reduce the amount of A-rich sequences within HIV-1 genomes, we have reduced the flexibility of RNA sequences in pol to analyze the functional significance of these A-rich ‘structurally poor’ RNA elements in HIV-1 pol. Our data showed that codon modification of HIV-1 sequences led to a suppression of virus infectivity by 5–100-fold, and this defect does not correlate with, viral entry, viral protein expression levels, viral protein profiles or virion packaging of genomic RNA. Codon modification of HIV-1 pol correlated with an enhanced dimer stability of the viral RNA genome, which was associated with a reduction of viral cDNA synthesis both during HIV-1 infection and in a cell free reverse transcription assay. Our data provided direct evidence that the HIV-1 A-rich pol sequence is not merely an evolutionary artifact of enzyme-induced hypermutations, and that HIV-1 has adapted to rely on A-rich RNA sequences to support the synthesis of viral cDNA during reverse transcription, highlighting the utility of using ‘structurally poor’ RNA domains in regulating biological process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)–mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, RNA silencing, usage of small double stranded RNAs of ~21 – 25 base pairs to regulate gene expression, has emerged as a powerful research tool to dissect the role of unknown host cell factors in this 'post-genomic' era. While the molecular mechanism of RNA silencing has not been precisely defined, the revelation that small RNA molecules are equipped with this regulatory function has transformed our thinking on the role of RNA in many facets of biology, illustrating the complexity and the dynamic interplay of cellular regulation. As plants and invertebrates lack the protein-based adaptive immunity that are found in jawed vertebrates, the ability of RNA silencing to shut down gene expression in a sequence-specific manner offers an explanation of how these organisms counteract pathogen invasions into host cells. It has been proposed that this type of RNA-mediated defence mechanism is an ancient form of immunity to offset the transgene-, transposon- and virus-mediated attack. However, whether 1) RNA silencing is a natural immune response in vertebrates to suppress pathogen invasion; or 2) vertebrate cells have evolved to counteract invasion in a 'RNA silencing' independent manner remains to be determined. A number of recent reports have provided tantalizing clues to support the view that RNA silencing functions as a physiological response to regulate viral infection in vertebrate cells. Amongst these, two manuscripts that are published in recent issues of Science and Immunity, respectively, have provided some of the first direct evidences that RNA silencing is an important component of antiviral defence in vertebrate cells. In addition to demonstrating RNA silencing to be critical to vertebrate innate immunity, these studies also highlight the potential of utilising virus-infection systems as models to refine our understanding on the molecular determinants of RNA silencing in vertebrate cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are mainly present in plants and function to inhibit protein synthesis through the removal of adenine residues from eukaryotic ribosomal RNA (rRNA). They are broadly classified into two groups: type I and type II. Type I RIPs are a diverse family of proteins comprising a single polypeptide chain, whereas type II RIPs are heterodimeric glycoproteins comprising an A-chain (functionally equivalent to a type I RIP) linked via a disulphide bond to a B chain, mediating cell entry. In this review, we describe common type I and type II RIPs, their diverse biological functions, mechanism of cell entry, stability in plasma and antigenicity. We end with a discussion of promising applications for RIPs in biomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 RNA polymerase II (RNAP II) transcription and pre-mRNA 3' end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3' end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3' end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m⁷G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3' end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5'-3' exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling.