922 resultados para RIGHT TO DRINKING WATER
Resumo:
A quantitative model of water movement within the immediate vicinity of an individual root is developed and results of an experiment to validate the model are presented. The model is based on the assumption that the amount of water transpired by a plant in a certain period is replaced by an equal volume entering its root system during the same time. The model is based on the Darcy-Buckingham equation to calculate the soil water matric potential at any distance from a plant root as a function of parameters related to crop, soil and atmospheric conditions. The model output is compared against measurements of soil water depletion by rice roots monitored using γ-beam attenuation in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo(ESALQ/USP) in Piracicaba, State of São Paulo, Brazil, in 1993. The experimental results are in agreement with the output from the model. Model simulations show that a single plant root is able to withdraw water from more than 0.1 m away within a few days. We therefore can assume that root distribution is a less important factor for soil water extraction efficiency.
Resumo:
Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
A remarkable feature of the carcinogenicity of inorganic arsenic is that while human exposures to high concentrations of inorganic arsenic in drinking water are associated with increases in skin, lung, and bladder cancer, inorganic arsenic has not typically caused tumors in standard laboratory animal test protocols. Inorganic arsenic administered for periods of up to 2 yr to various strains of laboratory mice, including the Swiss CD-1, Swiss CR:NIH(S), C57Bl/6p53(+/-), and C57Bl/6p53(+/+), has not resulted in significant increases in tumor incidence. However, Ng et al. (1999) have reported a 40% tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. In order to investigate the potential role of tissue dosimetry in differential susceptibility to arsenic carcinogenicity, a physiologically based pharmacokinetic (PBPK) model for inorganic arsenic in the rat, hamster, monkey, and human (Mann et al., 1996a, 1996b) was extended to describe the kinetics in the mouse. The PBPK model was parameterized in the mouse using published data from acute exposures of B6C3F1 mice to arsenate, arsenite, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) and validated using data from acute exposures of C57Black mice. Predictions of the acute model were then compared with data from chronic exposures. There was no evidence of changes in the apparent volume of distribution or in the tissue-plasma concentration ratios between acute and chronic exposure that might support the possibility of inducible arsenite efflux. The PBPK model was also used to project tissue dosimetry in the C57Bl/6J study, in comparison with tissue levels in studies having shorter duration but higher arsenic treatment concentrations. The model evaluation indicates that pharmacokinetic factors do not provide an explanation for the difference in outcomes across the various mouse bioassays. Other possible explanations may relate to strain-specific differences, or to the different durations of dosing in each of the mouse studies, given the evidence that inorganic arsenic is likely to be active in the later stages of the carcinogenic process. [Authors]
Resumo:
AIMS: To assess the cumulative impact of environmental and individual factors associated with adolescent alcohol misuse and their correlation with self-reported consequences of drinking. METHOD: Cross-sectional school-based survey of a nationally representative sample of 7548 post-mandatory school students and apprentices aged 16-20 years, Switzerland 2002. Alcohol misuse defined by frequency of alcohol use, episodes of drunkenness and driving while drunk. RESULTS: Fifteen significant risk factors were identified among both boys, and girls. An individual score of cumulated risk factors was created by adding the risk factors. The association between the score and the likelihood of being engaged in alcohol misuse was highly significant and dose-dependent (p<.001). A significant proportion of adolescents report perceived adverse consequences of their alcohol consumption. A linear trend (p<.001) was found between the score of risk factors and the proportion of respondents reporting problems related to drinking such as diminished school performance, physical hazard, relational problems and current risky sexual behavior. CONCLUSION: Risk factors for adolescent alcohol misuse are cumulative and can be synthesized into an individual score correlated with the likeliness of misuse. A further indication of the validity of this score is its linear relationship with self-reported problems related to drinking.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
The state-space approach is used to evaluate the relation between soil physical and chemical properties in an area cultivated with sugarcane. The experiment was carried out on a Rhodic Kandiudalf in Piracicaba, State of São Paulo, Brazil. Sugarcane was planted on an area of 0.21 ha i.e., in 15 rows 100 m long, spaced 1.4 m. Soil water content, soil organic matter, clay content and aggregate stability were sampled along a transect of 84 points, meter by meter. The state-space approach is used to evaluate how the soil water content is affected by itself and by soil organic matter, clay content, and aggregate stability of neighboring locations, in different combinations, aiming to contribute to a better understanding of the relation among these variables in the soil. Results show that soil water contents were successfully estimated by this approach. Best performances were found when the estimate of soil water content at locations i was related to soil water content, clay content and aggregate stability at locations i-1. Results also indicate that this state-space model using all series describes the soil water content better than any equivalent multiple regression equation.
Resumo:
Independence, respect, and equality are values important to all people. These values help define the concepts of autonomy (independence and freedom) and self-determination (the right to make decisions for one’s self). Because these rights are so valued in our society and are something that most of us would value for ourselves, the “least restrictive alternative” should always be considered before taking away a person’s civil and legal rights to make decisions for him or herself. The least restrictive alternative is an option, which allows a person to keep as much autonomy, and self-determination as possible while providing only the level of protection and supervision that is necessary. Some examples may include: representative payee for certain government benefit checks, joint bank accounts or advance directives for health care.
Resumo:
Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).
Resumo:
Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.
Resumo:
BACKGROUND: Although medical and travel plans gathered from pre-travel interviews are used to decide the provision of specific pre-travel health advice and vaccinations, there has been no evaluation of the relevance of this strategy. In a prospective study, we assessed the agreement between pre-travel plans and post-travel history and the effect on advice regarding the administration of vaccines and recommendations for malaria prevention. METHODS: We included prospectively all consenting adults who had not planned an organized tour. Pre- and post-travel information included questions on destination, itineraries, departure and return dates, access to bottled water, plan of bicycle ride, stays in a rural zone, and close contact with animals. The outcomes measured included: agreement between pre- and post-travel itineraries and activities; and the effect of these differences on pre-travel health recommendations, had the traveler gone to the actual versus intended destinations for actual versus intended duration and activities. RESULTS: Three hundred and sixty-five travelers were included in the survey, where 188 (52%) were males (median age 38 years). In 81(23%) travelers, there was no difference between pre- and post-travel history. Disagreement between pre- and post-travel history were the highest for stays in rural zones or with local people (66% of travelers), close contact with animals (33%), and bicycle riding (21%). According to post-travel history, 125 (35%) travelers would have needed rabies vaccine and 9 (3%) typhoid fever vaccine. Potential overprovision of vaccine was found in <2% of travelers. A change in the malaria prescription would have been recommended in 18 (5%) travelers. CONCLUSIONS: Pre-travel history does not adequately reflect what travelers do. However, difference between recommendations for the actual versus intended travel plans was only clinically significant for the need for rabies vaccine. Particular attention during pre-travel health counseling should focus on the risk of rabies, the need to avoid close contact with animals and to seek care for post-exposure prophylaxis following an animal bite.
Resumo:
The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR), and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd) under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC) were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR). The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.
Resumo:
The IUB Annual Report contains summaries for IUB dockets that were active during the calendar year as well as IUB background information, IUB work section highlights, descriptions of IUB court cases and participation in federal proceedings, listings of IUB assessments to jurisdictional utilities, and the IUB fiscal year budget.
Resumo:
Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface), and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.
Resumo:
The development of a whole-cell based sensor for arsenite detection coupling biological engineering and electrochemical techniques is presented. This strategy takes advantage of the natural Escherichia coli resistance mechanism against toxic arsenic species, such as arsenite, which consists of the selective intracellular recognition of arsenite and its pumping out from the cell. A whole-cell based biosensor can be produced by coupling the intracellular recognition of arsenite to the generation of an electrochemical signal. Hereto, E. coli was equipped with a genetic circuit in which synthesis of beta-galactosidase is under control of the arsenite-derepressable arsR-promoter. The E. coli reporter strain was filled in a microchip containing 16 independent electrochemical cells (i.e. two-electrode cell), which was then employed for analysis of tap and groundwater samples. The developed arsenic-sensitive electrochemical biochip is easy to use and outperforms state-of-the-art bacterial bioreporters assays specifically in its simplicity and response time, while keeping a very good limit of detection in tap water, i.e. 0.8ppb. Additionally, a very good linear response in the ranges of concentration tested (0.94ppb to 3.75ppb, R(2)=0.9975 and 3.75 ppb to 30ppb, R(2)=0.9991) was obtained, complying perfectly with the acceptable arsenic concentration limits defined by the World Health Organization for drinking water samples (i.e. 10ppb). Therefore, the proposed assay provides a very good alternative for the portable quantification of As (III) in water as corroborated by the analysis of natural groundwater samples from Swiss mountains, which showed a very good agreement with the results obtained by atomic absorption spectroscopy.
Resumo:
Due to the difficulty of estimating water percolation in unsaturated soils, the purpose of this study was to estimate water percolation based on time-domain reflectometry (TDR). In two drainage lysimeters with different soil textures TDR probes were installed, forming a water monitoring system consisting of different numbers of probes. The soils were saturated and covered with plastic to prevent evaporation. Tests of internal drainage were carried out using a TDR 100 unit with constant dielectric readings (every 15 min). To test the consistency of TDR-estimated percolation levels in comparison with the observed leachate levels in the drainage lysimeters, the combined null hypothesis was tested at 5 % probability. A higher number of probes in the water monitoring system resulted in an approximation of the percolation levels estimated from TDR - based moisture data to the levels measured by lysimeters. The definition of the number of probes required for water monitoring to estimate water percolation by TDR depends on the soil physical properties. For sandy clay soils, three batteries with four probes installed at depths of 0.20, 0.40, 0.60, and 0.80 m, at a distance of 0.20, 0.40 and 0.6 m from the center of lysimeters were sufficient to estimate percolation levels equivalent to the observed. In the sandy loam soils, the observed and predicted percolation levels were not equivalent even when using four batteries with four probes each, at depths of 0.20, 0.40, 0.60, and 0.80 m.