913 resultados para Quasars, Absorption Lines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma.Methods: Five clear cell renal cell carcinoma cell lines and carcinoma samples were used to analyze GPC3 mRNA expression (qRT-PCR). Then, representative cell lines, one primary renal carcinoma (786-O) and one metastatic renal carcinoma (ACHN), were chosen to carry out functional studies. We constructed a GPC3 expression vector and transfected the renal carcinoma cell lines, 786-O and ACHN. GPC3 overexpression was analyzed using qRT-PCR and immunocytochemistry. We evaluated cell proliferation using MTT and colony formation assays. Flow cytometry was used to evaluate apoptosis and perform cell cycle analyses.Results: We observed that GPC3 is downregulated in clear cell renal cell carcinoma samples and cell lines compared with normal renal samples. GPC3 mRNA expression and protein levels in 786-O and ACHN cell lines increased after transfection with the GPC3 expression construct, and the cell proliferation rate decreased in both cell lines following overexpression of GPC3. Further, apoptosis was not induced in the renal cell carcinoma cell lines overexpressing GPC3, and there was an increase in the cell population during the G1 phase in the cell cycle.Conclusion: We suggest that the GPC3 gene reduces the rate of cell proliferation through cell cycle arrest during the G1 phase in renal cell carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: Angelica keiskei is a green leafy vegetable rich in plant pigment phytochemicals such as flavonoids and carotenoids. This study examined bioavailability of flavonoids and carotenoids in Angelica keiskei and the alteration of the antioxidant performance in vivo.SUBJECTS AND MATERIALS: Absorption kinetics of phytochemicals in Angelica keiskei were determined in healthy older adults (>60 y, n = 5) and subjects with metabolic syndrome (n = 5). Subjects consumed 5 g dry Angelica keiskei powder encapsulated in gelatin capsules with a low flavonoid and carotenoid liquid meal. Plasma samples were collected at baseline, 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 h. Samples were analyzed for flavonoids and carotenoids using HPLC systems with electrochemical and UV detection, respectively, and for total antioxidant performance by fluorometry.RESULTS: After ingestion of Angelica keiskei increases in plasma quercetin concentrations were observed at 1-3 and 6-8 hr in the healthy group and at all time points in the metabolic syndrome group compared to baseline (P < 0.05). Plasma lutein concentrations were significantly elevated in both the healthy and metabolic syndrome groups at 8 hr (P < 0.05). Significant increases in total antioxidant performance were also observed in both the healthy and the metabolic syndrome groups compared to baseline (P < 0.05).CONCLUSIONS: Findings of this study clearly demonstrate the bioavailability of phytonutrients of Angelica keiskei and their ability to increase antioxidant status in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Medical Physics has been developing very fast due to the progress of the technologies and to the increase of the concerns with cure of diseases. One of the Medical Physics main performances at the present time is the use of ionizing radiations for cancer treatment, especially, services as Radiotherapy. The radiotherapy technique uses ionizing radiation with therapeutic end of cancer controls, avoiding your proliferation and it worsens of the patient. For the treatment a radiation bunch is used, with rectangular form, that it passes through the different types of tissues of the patient's body, and depending on the attenuation and of the depth of the fabrics, a great amount of energy is deposited inside in different points of the body. Like this, to plan this treatment type it should be obtained the dimension of the distribution and dose absorption along the volume. For this, it is necessary in the planning of the treatment of the cancer for radiotherapy to build isodose curves, which are lines that represent points of same amount of dose to be deposited in the area to be treated. To aid the construction of the curves of form isodose to reach the best result in the planning of the treatment, in other words, a great planning, providing the maximum of dose in the tumor and saving the healthy and critical organs, it has been using mathematical tools and computational. A plan of cancer treatment for radiotherapy is considered great when all the parameters that involve the treatment, be them physical or biological, they were investigated and adapted individually for the patient. For that, is considered the type and the location of the tumor, worrying about the elimination of the cancer without damaging the healthy tissue of the treated area, mainly the risk organs, which are in general very sensitive to the radiations. This way, the optimization techniques... (Complete abstract click electronic access below)