984 resultados para Quantum many-body systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the Liapunov exponent to explore the phase space of a dynamical system. Considering the planar, circular restricted three-body problem for a mass ratio mu = 10(-3) (close to the Jupiter/Sun case), we have integrated similar to 16,000 starting conditions for orbits started interior to that of the perturber and we have estimated the maximum Liapunov characteristic exponent for each starting condition. Despite the fact that the integrations, in general, are for only a few thousand orbital periods of the secondary, a comparative analysis of the Liapunov exponents for various values of the 'cut-off' gives a good overview of the structure of the phase space. It provides information about the diffusion rates of the various chaotic regions, the location of the regular regions associated with primary resonances and even details such as the location of secondary resonances that produce chaotic regions inside the regular regions of primary resonances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A q-deformed analogue of zero-coupled nucleon pair states is constructed and the possibility of accounting for pairing correlations examined. For the single orbit case, the deformed pairs are found to be more strongly bound than the pairs with zero deformation, when a real-valued q parameter is used. It is found that an appropriately scaled deformation parameter reproduces the empirical few nucleon binding energies for nucleons in the 1f7/2 orbit and 1g9/2 orbit. The deformed pair Hamiltonian apparently accounts for many-body correlations, the strength of higher-order force terms being determined by the deformation parameter q. An extension to the multishell case, with deformed zero-coupled pairs distributed over several single particle orbits, has been realized. An analysis of calculated and experimental ground state energies and the energy spectra of three lowermost 0+ states, for even-A Ca isotopes, reveals that the deformation simulates the effective residual interaction to a large extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give some properties relating the recurrence relations of orthogonal polynomials associated with any two symmetric distributions d phi(1)(x) and d phi(2)(x) such that d phi(2)(x) = (I + kx(2))d phi(1)(x). AS applications of these properties, recurrence relations for many interesting systems of orthogonal polynomials are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In engineering practical systems the excitation source is generally dependent on the system dynamic structure. In this paper we analyze a self-excited oscillating system due to dry friction which interacts with an energy source of limited power supply (non ideal problem). The mechanical system consists of an oscillating system sliding on a moving belt driven by a limited power supply. In the oscillating system considered here, dry friction acts as an excitation mechanism for stick-slip oscillations. The stick-slip chaotic oscillations are investigated because the knowledge of their dynamic characteristics is an important step in system design and control. Many engineering systems present stick-slip chaotic oscillations such as machine tools, oil well drillstrings, car brakes and others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest the possibility of observing and studying bright vortex solitons in attractive Bose-Einstein condensates in three dimensions with a radial trap. Such systems lie on the verge of critical stability and we discuss the conditions of their stability. We study the interaction between two such solitons. Unlike the text-book solitons in one dimension, the interaction between two radially trapped and axially free three-dimensional solitons is inelastic in nature and involves exchange of particles and deformation in shape. The interaction remains repulsive for all phase δ between them except for δ ≈ 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a renormalized zero-range interaction approach to estimate the size of generic weakly bound three-body systems where two particles are identical. We present results for the neutron-neutron root-mean-square distances of the halo nuclei 6He, 11Li, 14Be and 20C, where the systems are taken as two halo neutrons with an inert point-like core. We also report an approach to obtain the neutron-neutron correlation function in halo nuclei. In this case, our results suggest a review of the corresponding experimental data analysis. © 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution I provide an overview of our group papers involving universalities in light exotic nuclei. It is also made a connection of these systems with some weakly bound ultracold molecules. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of dissipative and coherent N-body systems, such as a Bose-Einstein condensate, which can be described by an extended Gross-Pitaevskii formalism, is investigated. In order to analyze chaotic and unstable regimes, two approaches are considered: a metric one, based on calculations of Lyapunov exponents, and an algorithmic one, based on the Lempel-Ziv criterion. The consistency of both approaches is established, with the Lempel-Ziv algorithmic found as an efficient complementary approach to the metric one for the fast characterization of dynamical behaviors obtained from finite sequences. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The universal properties of weakly-bound tetramers close to the scaling limit are investigated by solving a subtracted set of Faddeev-Yakubovsky (FY) equations for identical bosons with a zero-range interaction. The solution demands a four-body scale independent of the trimer properties. Furthermore, the effect of a finite effective range is introduced in the FY equations, which we show produces results that are distinct from the scale variation. In particular range effects to two universal scaling functions for the tetramers are investigated. The correlation between successive tetramer energies corresponding to states within two Efimov trimer energies, proposed before and studied close to the unitary limit; and the correlation between the position of the four-atom recombination peaks. In this case, we found a shift in the scaling function due to the range, which can be associated to the shift of the data found for caesium atoms, with respect to zero-range calculations, due to a nonvanishing range in the actual experimental setups. © 2013 Springer-Verlag Wien.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study consistently the pion's static observables and the elastic and γ* γ → π0 transition form factors within a light-front model. Consistency requires that all calculations are performed within a given model with the same and single adjusted length or mass-scale parameter of the associated pion bound-state wave function. Our results agree well with all extent data including recent Belle data on the γ* γ → π0 form factor at large q2, yet the BaBar data on this transition form factor resists a sensible comparison. We relax the initial constraint on the bound-state wave function and show the BaBar data can partially be accommodated. This, however, comes at the cost of a hard elastic form factor not in agreement with experiment. Moreover, the pion charge radius is about 40 % smaller than its experimentally determined value. It is argued that a decreasing charge radius produces an ever harder form factor with a bound-state amplitude difficultly reconcilable with soft QCD. We also discuss why vector dominance type models for the photon-quark vertex, based on analyticity and crossing symmetry, are unlikely to reproduce the litigious transition form factor data. © 2013 Springer-Verlag Wien.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)