948 resultados para Quadratic assignment
Resumo:
Kainji Lake, the first man-made lake in Nigeria is one of the most researched water bodies in Africa. Earlier studies indicated that there was no systematic management of the lake fisheries involving the participation of the fishers in the decision-making processes before 1993. In 1993, the Nigeria-German Kainji Lake Fisheries Promotion Project (KLFPP) started the introduction of a bottom-up approach in the management of the fishery resources through a random selection of some fishers representatives for the decision making body of the project. The paper traces the democratization process of the management approach to the lake fisheries culminating in the systematic selection, appointment, training and assignment of responsibilities to twenty-four Wakilis covering the 316 fishing communities around Lake Kainji
Resumo:
The Alawariwa beels located in the flood plains of the Ogun River, off Ibafo in Owode/Obafemi Local Government Area of Ogun State number 16 with an approximate total surface area of 28.0 hectares. The beels are conveniently exploited between January and April annually when the dry season and riverine contraction make this possible. The daily landing showed that the fish enclosure is truly a natural fisheries reserve as well as a medium of biodiversity. Fish catch per unit effort is reasonable especially for the more abundant fish species. The beel is sufficiently productive and worthy of the fishing efforts of the fishing efforts of eight fishers undertaking the daily assignment. Beel fishing is therefore economically advisable for fishers having access to such valuable communal or individual natural wetland resources
Resumo:
This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.
In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.
In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.
In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.
Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.
In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.
Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].
Resumo:
Numerical approximations of nonunique solutions of the Navier-Stokes equations are obtained for steady viscous incompressible axisymmetric flow between two infinite rotating coaxial disks. For example, nineteen solutions have been found for the case when the disks are rotating with the same speed but in opposite direction. Bifurcation and perturbed bifurcation phenomena are observed. An efficient method is used to compute solution branches. The stability of solutions is analyzed. The rate of convergence of Newton's method at singular points is discussed. In particular, recovery of quadratic convergence at "normal limit points" and bifurcation points is indicated. Analytical construction of some of the computed solutions using singular perturbation techniques is discussed.
Resumo:
The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.
Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.
Resumo:
Socioeconomic factors have long been incorporated into environmental research to examine the effects of human dimensions on coastal natural resources. Boyce (1994) proposed that inequality is a cause of environmental degradation and the Environmental Kuznets Curve is a proposed relationship that income or GDP per capita is related with initial increases in pollution followed by subsequent decreases (Torras and Boyce, 1998). To further examine this relationship within the CAMA counties, the emission of sulfur dioxide and nitrogen oxides, as measured by the EPA in terms of tons emitted, the Gini Coefficient, and income per capita were examined for the year of 1999. A quadratic regression was utilized and the results did not indicate that inequality, as measured by the Gini Coefficient, was significantly related to the level of criteria air pollutants within each county. Additionally, the results did not indicate the existence of the Environmental Kuznets Curve. Further analysis of spatial autocorrelation using ArcMap 9.2, found a high level of spatial autocorrelation among pollution emissions indicating that relation to other counties may be more important to the level of sulfur dioxide and nitrogen oxide emissions than income per capita and inequality. Lastly, the paper concludes that further Environmental Kuznets Curve and income inequality analyses in regards to air pollutant levels incorporate spatial patterns as well as other explanatory variables. (PDF contains 4 pages)
Resumo:
Methodology for the preparation of allenes from propargylic hydrazine precursors under mild conditions is described. Oxidation of the propargylic hydrazines, which can be readily prepared from propargylic alcohols, with either of two azo oxidants, diethyl azodicarboxylate (DEAD) or 4-methyl 1,2-triazoline-3,5-dione (MTAD), effects conversion to the allenes, presumably via sigmatropic rearrangement of a monoalkyl diazene intermediate. This rearrangement is demonstrated to proceed with essentially complete stereospecificity. The application of this methodology to the preparation of other allenes, including two that are notable for their reactivity and thermal instability, is also described.
The structural and mechanistic study of a monoalkyl diazene intermediate in the oxidative transformation of propargylic hydrazines to allenes is described. The use of long-range heteronuclear NMR coupling constants for assigning monoalkyl diazene stereochemistry (E vs Z) is also discussed. Evidence is presented that all known monoalkyl diazenes are the E isomers, and the erroneous assignment of stereochemistry in the previous report of the preparation of (Z)-phenyldiazene is discussed.
The synthesis, characterization, and reactivity of 1,6-didehydro[10]annulene are described. This molecule has been recognized as an interesting synthetic target for over 40 years and represents the intersection of two sets of extensively studied molecules: nonbenzenoid aromatic compounds and molecules containing sterically compressed π-systems.The formation of 1,5-dehydronaphthalene from 1 ,6-didehydro[10]annulene is believed to be the prototype for cycloaromatizations that produce 1,4-dehydroaromatic species with the radical centers disposed anti about the newly formed single bond. The aromaticity of this annulene and the facility of its cycloaromatization are also analyzed.
Resumo:
In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.
The main results of the thesis are the following two theorems.
Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.
Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.
Besides this we also established the following results:
(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.
(2) MT holds for Ribet-type abelian varieties.
(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.
(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.
(5) For some abelian varieties either MT or the Hodge conjecture holds.
Resumo:
This dissertation contains three essays on mechanism design. The common goal of these essays is to assist in the solution of different resource allocation problems where asymmetric information creates obstacles to the efficient allocation of resources. In each essay, we present a mechanism that satisfactorily solves the resource allocation problem and study some of its properties. In our first essay, ”Combinatorial Assignment under Dichotomous Preferences”, we present a class of problems akin to time scheduling without a pre-existing time grid, and propose a mechanism that is efficient, strategy-proof and envy-free. Our second essay, ”Monitoring Costs and the Management of Common-Pool Resources”, studies what can happen to an existing mechanism — the individual tradable quotas (ITQ) mechanism, also known as the cap-and-trade mechanism — when quota enforcement is imperfect and costly. Our third essay, ”Vessel Buyback”, coauthored with John O. Ledyard, presents an auction design that can be used to buy back excess capital in overcapitalized industries.
Resumo:
The field of cavity-optomechanics explores the interaction of light with sound in an ever increasing array of devices. This interaction allows the mechanical system to be both sensed and controlled by the optical system, opening up a wide variety of experiments including the cooling of the mechanical resonator to its quantum mechanical ground state and the squeezing of the optical field upon interaction with the mechanical resonator, to name two.
In this work we explore two very different systems with different types of optomechanical coupling. The first system consists of two microdisk optical resonators stacked on top of each other and separated by a very small slot. The interaction of the disks causes their optical resonance frequencies to be extremely sensitive to the gap between the disks. By careful control of the gap between the disks, the optomechanical coupling can be made to be quadratic to first order which is uncommon in optomechanical systems. With this quadratic coupling the light field is now sensitive to the energy of the mechanical resonator and can directly control the potential energy trapping the mechanical motion. This ability to directly control the spring constant without modifying the energy of the mechanical system, unlike in linear optomechanical coupling, is explored.
Next, the bulk of this thesis deals with a high mechanical frequency optomechanical crystal which is used to coherently convert photons between different frequencies. This is accomplished via the engineered linear optomechanical coupling in these devices. Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed and, in terms of an equivalent photon number signal level, are found to correspond to an internal noise level of only 6 and 4 times 10x^-3 quanta, respectively.
We begin by developing the requisite theoretical background to describe the system. A significant amount of time is then spent describing the fabrication of these silicon nanobeams, with an emphasis on understanding the specifics and motivation. The experimental demonstration of wavelength conversion is then described and analyzed. It is determined that the method of getting photons into the cavity and collected from the cavity is a fundamental limiting factor in the overall efficiency. Finally, a new coupling scheme is designed, fabricated, and tested that provides a means of coupling greater than 90% of photons into and out of the cavity, addressing one of the largest obstacles with the initial wavelength conversion experiment.
Resumo:
Threefold symmetric Fe phosphine complexes have been used to model the structural and functional aspects of biological N2 fixation by nitrogenases. Low-valent bridging Fe-S-Fe complexes in the formal oxidation states Fe(II)Fe(II), Fe(II)/Fe(I), and Fe(I)/Fe(I) have been synthesized which display rich spectroscopic and magnetic behavior. A series of cationic tris-phosphine borane (TPB) ligated Fe complexes have been synthesized and been shown to bind a variety of nitrogenous ligands including N2H4, NH3, and NH2
Treatment of an anionic FeN2 complex with excess acid also results in the formation of some NH3, suggesting the possibility of a catalytic cycle for the conversion of N2 to NH3 mediated by Fe. Indeed, use of excess acid and reductant results in the formation of seven equivalents of NH3 per Fe center, demonstrating Fe mediated catalytic N2 fixation with acids and protons for the first time. Numerous control experiments indicate that this catalysis is likely being mediated by a molecular species.
A number of other phosphine ligated Fe complexes have also been tested for catalysis and suggest that a hemi-labile Fe-B interaction may be critical for catalysis. Additionally, various conditions for the catalysis have been investigated. These studies further support the assignment of a molecular species and delineate some of the conditions required for catalysis.
Finally, combined spectroscopic studies have been performed on a putative intermediate for catalysis. These studies converge on an assignment of this new species as a hydrazido(2-) complex. Such species have been known on group 6 metals for some time, but this represents the first characterization of this ligand on Fe. Further spectroscopic studies suggest that this species is present in catalytic mixtures, which suggests that the first steps of a distal mechanism for N2 fixation are feasible in this system.
Resumo:
We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.
Resumo:
Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.
In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.
As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.
Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.
Resumo:
[ES]Este Trabajo consiste en diseñar un robot de cinemática paralela de dos grados de libertad partiendo de unos requisitos mínimos necesarios que habrán de verificarse. A continuación, se fabricará siguiendo dicho diseño para finalmente montarlo sobre unas guías lineales constituyendo así una máquina de cinemática paralela, objetivo final conjunto de este Trabajo añadido al mencionado control de las guías. Resulta de especial interés su particular arquitectura, aspecto clave cuando se pretende un sistema preciso y reducir las vibraciones.
Resumo:
[ES]Las políticas de apoyo al emprendimiento se han demostrado imprescindibles para el desarrollo económico de los países. En este contexto las conocidas incubadoras de empresas juegan un papel importante, pero los innovadores aceleradores de crecimiento que están logrando convertir pequeñas start-up en grandes compañías de base tecnológica se presentan como una apuesta para el futuro. La unión de ambos conceptos constituye un modelo eficaz de apoyo a las start-up tecnológicas. En el trabajo se presentan varios estudios que demuestran que mientras que, en las incubadoras los recursos más valorados son el ahorro de costes y el mentoring, los aceleradores obtienen muy buena calificación en todos sus ámbitos. Aun así la facilidad para obtener financiación y el mentoring también son los aspectos más valorados por los participantes en la aceleración. Además se han utilizado dos casos de éxito con el objeto de proponer un corolario de buenas prácticas que ayude entre otros, a la mejora de la situación de la Comunidad Autónoma del País Vasco (CAPV) en cuanto a emprendimiento se refiere.