925 resultados para Pumpkin - Osmo-convective drying
Resumo:
About 86 species of fish have been recorded in the Lake Chad. Most of the species occurring in the lake are widespread including most of the commercially important species. Fish distribution in the lake was adversely affected by the 1972/73 and 1983/84 droughts. The commercially important species before the 1972/73 drought were; Lates, Labeo distichodus, Heterotis, Gymnarchus, Hydrocynus, Citharinus and Bagrus. Other species which had less commercial value at that time include, Clarias, Gnathanemus, Polypterus, Protopterus, Tilapia and Synodontis. Lates niloticus was the most predominant species of commercial importance comprising 50-60% of the total catches of fishermen between 1962 and 1973. Before the 1972/73 drought, occurrence of Clarias lazera was negligible and restricted to long line catches and had little commercial value. As a result of the drought of 1972/73 which resulted in near drying up to the northern sector of the lake, fish populations were confined to isolated pools and were completely scooped out. The remaining fish populations retreated to the southern basin where enough water always remained to hold the surviving representatives of the population. The effects of the drought resulted in occurrence of the little known C. lazera along with other hardy species like Tilapia and Protopterus to dominate the existing fish species composition. In 1976, C. lazera dominated the total catches of fishermen with 85.6%. An overview of the fish population in the lake, their relative abundance, changes in species composition, the effects of drought on the fauna of the lake based on the available data are discussed in this paper
Resumo:
The present paper employs the direct simulation Monte Carlo (DSMC) method to study the Rayleigh-Benard flows, where the temperature ratio of the upper to lower plate is fixed to 0.1. For a Knudsen number (Kn) of 0.01, as the Rayleigh number (Ra) increases, the flow changes from the thermal conductive state to the convective state at about Ra=1700, and the calculated relation of heat flux through the lower plate versus Ra is in good agreement with classical experimental and theoretical results. For Kn=0.05, the thermal conductive state remains stable, and the increase of Ra cannot trigger thermal instability.
Resumo:
This is the first part of direct numerical simulation (DNS) of double-diffusive convection in a slim rectangular enclosure with horizontal temperature and concentration gradients. We consider the case with the thermal Rayleigh number of 10^5, the Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to temperature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th order upwind compact scheme was developed for approximation of convective terms, and a three-stage third-order Runge-Kutta method was employed for time advancement. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow of transition is a complex series changing fromthe steady to periodic, chaotic, periodic, quasi-periodic, and finally back to periodic. There are two types of periodic flow, one is simple periodic flow with single fundamental frequency (FF), and another is complex periodic flow with multiple FFs. This process is illustrated by using time-velocity histories, Fourier frequency spectrum analysis and the phase-space rajectories.
Resumo:
Apart from activities of some foreign-based vessels, commercial exploitation of pelagic fishery resources in Nigeria has been limited to inland and inshore waters. Estimated potential for the inshore pelagic fishery is 70,000-90,000 tonnes while the small pelagic resources in the near offshore as well as tuna and tuna-like fishes further offshore have potentials of about 10,000 metric tonnes each. Despite the abundance of tuna within and adjoining the Nigerian EEZ, and its importance in the international market, only foreign-flagged vessels take advantage. In addition, the inshore pelagic fisheries in Nigeria have for long remained underexploited. The most common processing method has remained the age-old traditional smoke-drying, which is inadequate resulting in colossal waste through denaturation and incessant infestations by insects and moulds among other causes. The use of modern smoking techniques coupled with effective distribution systems can undoubtedly reduce waste. However, these are often not within the reach of most artisanal processors. It is proposed that the organised private sector should invest on simple but proven processing equipment such as smoking kilns. The inshore pelagic fish species and other small fishes can sustain cottage canning industries sited in fishing villages/settlements while larger canning factories should be based on offshore resources. Modalities for successful investments are highlighted, while a major consideration is given to joint ventures
Resumo:
The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under conditions relevant to a regenerative cooling system for scramjet applications. A test facility developed for the present study can handle kerosene in a temperature range of 300-1000 K, a pressure range of 2.6-5 MPa, and a mass How rate range of 10-100 g/s. In addition, the test section was uniquely designed such that both the wall temperature and the bulk fuel temperature were measured at the same location along the flowpath. The measured temperature distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed; hence, the associated correlation showed a more significant Reynolds number dependency.
Resumo:
The dispersion of an isolated, spherical, Brownian particle immersed in a Newtonian fluid between infinite parallel plates is investigated. Expressions are developed for both a 'molecular' contribution to dispersion, which arises from random thermal fluctuations, and a 'convective' contribution, arising when a shear flow is applied between the plates. These expressions are evaluated numerically for all sizes of the particle relative to the bounding plates, and the method of matched asymptotic expansions is used to develop analytical expressions for the dispersion coefficients as a function of particle size to plate spacing ratio for small values of this parameter.
It is shown that both the molecular and convective dispersion coefficients decrease as the size of the particle relative to the bounding plates increase. When the particle is small compared to the plate spacing, the coefficients decrease roughly proportional to the particle size to plate spacing ratio. When the particle closely fills the space between the plates, the molecular dispersion coefficient approaches zero slowly as an inverse logarithmic function of the particle size to plate spacing ratio, and the convective dispersion coefficent approaches zero approximately proportional to the width of the gap between the edges of the sphere and the bounding plates.
Resumo:
This thesis consists of three separate studies of roles that black holes might play in our universe.
In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.
In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.
In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.
Resumo:
The study assessed the contribution of women in fish handling, processing and marketing in Kainji Lake basin. Structured questionnaires were administered to three fishing villages selected at random. The fishing villages were Monai, Yuna, Fakun, and New Bussa market. The study revealed that women play vital roles in fisheries activities as producers, assistants to men preservers, traders and financiers. The notable fishing activity performed by women is processing right from the moment the boats or canoes land at sites. Women assist in emptying nets, sorting gutting and cleaning the catch. In most cases their activities involved salting smoking and drying using traditional processing techniques. Women are also involved in storage and marketing of both fresh and smoked fish. In spite of these important contribution, most women in the various fishing communities are illiterates, have little or no say in decision making in areas that affects their livelihood and are regarded as inferior fedex. Culture and religion also has significant impact on their contribution in fishing activities
Resumo:
A zero pressure gradient boundary layer over a flat plate is subjected to step changes in thermal condition at the wall, causing the formation of internal, heated layers. The resulting temperature fluctuations and their corresponding density variations are associated with turbulent coherent structures. Aero-optical distortion occurs when light passes through the boundary layer, encountering the changing index of refraction resulting from the density variations. Instantaneous measurements of streamwise velocity, temperature and the optical deflection angle experienced by a laser traversing the boundary layer are made using hot and cold wires and a Malley probe, respectively. Correlations of the deflection angle with the temperature and velocity records suggest that the dominant contribution to the deflection angle comes from thermally-tagged structures in the outer boundary layer with a convective velocity of approximately 0.8U∞. An examination of instantaneous temperature and velocity and their temporal gradients conditionally averaged around significant optical deflections shows behavior consistent with the passage of a heated vortex. Strong deflections are associated with strong negative temperature gradients, and strong positive velocity gradients where the sign of the streamwise velocity fluctuation changes. The power density spectrum of the optical deflections reveals associated structure size to be on the order of the boundary layer thickness. A comparison to the temperature and velocity spectra suggests that the responsible structures are smaller vortices in the outer boundary layer as opposed to larger scale motions. Notable differences between the power density spectra of the optical deflections and the temperature remain unresolved due to the low frequency response of the cold wire.
Resumo:
Detailed oxygen, hydrogen and carbon isotope studies have been carried out on igneous and metamorphic rocks of the Stony Mountain complex, Colorado, and the Isle of Skye, Scotland, in order to better understand the problems of hydrothermal meteoric water-rock interaction.
The Tertiary Stony Mountain stock (~1.3 km in diameter), is composed of an outer diorite, a main mass of biotite gabbro, and an inner diorite. The entire complex and most of the surrounding country rocks have experienced various degrees of 18O depletion (up to 10 per mil) due to interaction with heated meteoric waters. The inner diorite apparently formed from a low-18O magma with δ18O ≃ +2.5, but most of the isotopic effects are a result of exchange between H2O and solidified igneous rocks. The low-18O inner diorite magma was probably produced by massive assimilation and/or melting of hydrothermally altered country rocks. The δ18O values of the rocks generally increase with increasing grain size, except that quartz typically has δ18O = +6 to +8, and is more resistant to hydrothermal exchange than any other mineral studied. Based on atom % oxygen, the outer diorites, gabbros, and volcanic rocks exhibit integrated water/rock ratios of 0.3 ± 0.2, 0.15 ± 0.1, and 0.2 ± 0.1, respectively. Locally, water/rock ratios attain values greater than 1.0. Hydrogen isotopic analyses of sericites, chlorites, biotites, and amphiboles range from -117 to -150. δD in biotites varies inversely with Fe/Fe+Mg, as predicted by Suzuoki and Epstein (1974), and positively with elevation, over a range of 600 m. The calculated δD of the mid-to-late-Tertiary meteoric waters is about -100. Carbonate δ13C values average -5.5 (PDB), within the generally accepted range for deep-seated carbon.
Almost all the rocks within 4 km of the central Tertiary intrusive complex of Skye are depleted in 18O. Whole-rock δ18O values of basalts (-7. 1 to +8.4), Mesozoic shales (-0.6 to + 12.4), and Precambrian sandstones (-6.2 to + 10.8) systematically decrease inward towards the center of the complex. The Cuillin gabbro may have formed from a 18O-depleted magma (depleted by about 2 per mil); δ18O of plagioclase (-7.1 to + 2.5) and pyroxene (-0.5 to + 3.2) decrease outward toward the margins of the pluton. The Red Hills epigranite plutons have δ18O quartz (-2.7 to + 7.6) and feldspar (-6.7 to + 6.0) that suggest about 3/4 of the exchange took place at subsolidus temperatures; profound disequilibrium quartz-feldspar fractionations (up to 12) are characteristic. The early epigranites were intruded as low-18O melts (depletions of up to 3 per mil) with δ18O of the primary, igneous quartz decreasing progressively with time. The Southern Porphyritic Epigranite was apparently intruded as a low-18O magma with δ18O ≃ -2.6. A good correlation exists between grain size and δ18O for the unique, high-18O Beinn an Dubhaich granite which intrudes limestone having a δ18O range of +0.5 to +20.8, and δ13C of -4.9 to -1.0. The δD values of sericites (-104 to -107), and amphiboles, chlorites, and biotites (-105 to -128) from the igneous rocks , indicate that Eocene surface waters at Skye had δD ≃ -90. The average water/rock ratio for the Skye hydrothermal system is approximately one; at least 2000 km3 of heated meteoric waters were cycled through these rocks.
Thus these detailed isotopic studies of two widely separated areas indicate that (1) 18O-depleted magmas are commonly produced in volcanic terranes invaded by epizonal intrusions; (2) most of the 18O-depletion in such areas are a result of subsolidus exchange (particularly of feldspars); however correlation of δ18O with grain size is generally preserved only for systems that have undergone relatively minor meteoric hydrothermal exchange; (3) feldspar and calcite are the minerals mos t susceptible to oxygen isotopic exchange, whereas quartz is very resistant to oxygen isotope exchange; biotite, magnetite, and pyroxene have intermediate susceptibilities; and (4) basaltic country rocks are much more permeable to the hydrothermal convective system than shale, sandstone, or the crystalline basement complex.
Resumo:
The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc>>1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc. Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc>>1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.
Resumo:
The author explains some aspects of sampling phytoplankton blooms and the evaluation of results obtained from different methods. Qualitative and quantitative sampling is covered as well as filtration, freeze-drying and toxin separation.
Resumo:
Changes in sustainability of aquatic ecosystems are likely to be brought about by the global warming that has been widely predicted. In this article, the effects of water temperature on water-bodies (lakes, oceans and rivers) are reviewed followed by the effects of temperature on aquatic organisms. Almost all aquatic organisms require exogenous heat before they can metabolise efficiently. An organism that is adapted to warm temperatures will have a higher rate of metabolism of food organisms and this increases feeding rate. In addition, an increase in temperature raises the metabolism of food organisms, so food quality can be altered. Where populations have a different tolerance to temperature the result is habitat partitioning. One effect of prolonged high temperature is that it causes water to evaporate readily. In the marine littoral this is not an important problem as tides will replenish water in pools. Small rain pools are found in many tropical countries during the rainy season and these become incompletely dried at intervals. The biota of such pools must have resistant stages within the life cycle that enable them to cope with periods of drying. The most important potential effects of global warming include (i) the alteration of existing coastlines, (ii) the development of more deserts on some land masses, (iii) higher productivity producing higher crop production but a greater threat of algal blooms and (iv) the processing of organic matter at surface microlayers.
Resumo:
In a recent study in Freshwater Forum on Speakman's Pond (also known as Nursery Pond) the impression was given that it had been a permanent water-filled pond which had recently dried out due to exceptionally low rainfall. In fact, Nursery Pond was created by the extraction of gravel and was never more than 50 cm deep, until the creation of trenches in 1989 to provide a refuge for aquatic life. The Nursery Pond followed a seasonal pattern of filling with winter rain and slowly drying out between 1940 to 1970. It had no established aquatic vegetation, no fish, and only rarely amphibians. Permanent water was present only from about 1979 until 1995 due to leakage from a Thames water storage reservoir.
Resumo:
The anisotropy of 1.3 - 2.3 MeV protons in interplanetary space has been measured using the Caltech Electron/Isotope Spectrometer aboard IMP-7 for 317 6-hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies are determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles is found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy is inconsistent with previously proposed sources of low-energy proton increases seen at 1 AU which involve continual solar acceleration.
The typical properties of this new component of low-energy cosmic rays have been determine d for this period which is near solar minimum. The particles have a median intensity of 0.06 protons/ cm^(2)-sec-sr-MeV and a mean spectral index of -3.15.The amplitude of the diffusive anisotropy is approximately proportional to the solar wind speed. The rate at which particles are diffusing toward the sun is larger than the rate at which the solar wind is convecting the particles away from the sun. The 20 to 1 proton to alpha ratio typical of this new component has been reported by Mewaldt, et al. (1975b).
A propagation model with κ_(rr) assumed independent of radius and energy is used to show that the anisotropy could be due to increases similar to those found by McDonald, et al. (1975) at ~3 AU. The interplanetary Fermi-acceleration model proposed by Fisk (1976) to explain the increases seen near 3 AU is not consistent with the ~12 per cent diffusive anisotropy found.
The dependence of the diffusive anisotropy on various parameters is shown. A strong dependence of the direction of the diffusive anisotropy on the concurrently measured magnetic field direction is found, indicating a κ_⊥ less than κ_∥ to be typical for this large data set.