1000 resultados para Pump classification
Resumo:
A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.
Resumo:
Real-world text classification tasks often suffer from poor class structure with many overlapping classes and blurred boundaries. Training data pooled from multiple sources tend to be inconsistent and contain erroneous labelling, leading to poor performance of standard text classifiers. The classification of health service products to specialized procurement classes is used to examine and quantify the extent of these problems. A novel method is presented to analyze the labelled data by selectively merging classes where there is not enough information for the classifier to distinguish them. Initial results show the method can identify the most problematic classes, which can be used either as a focus to improve the training data or to merge classes to increase confidence in the predicted results of the classifier.
Resumo:
This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.
Resumo:
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics.
Resumo:
This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.
Resumo:
There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.
Resumo:
Deep Brain Stimulation has been used in the study of and for treating Parkinson’s Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient’s brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition.
Resumo:
Obesity is a key factor in the development of the metabolic syndrome (MetS), which is associated with increased cardiometabolic risk. We investigated whether obesity classification by body mass index (BMI) and body fat percentage (BF%) influences cardiometabolic profile and dietary responsiveness in 486 MetS subjects (LIPGENE dietary intervention study). Anthropometric measures, markers of inflammation and glucose metabolism, lipid profiles, adhesion molecules and haemostatic factors were determined at baseline and after 12 weeks of 4 dietary interventions (high saturated fat (SFA), high monounsaturated fat (MUFA) and 2 low fat high complex carbohydrate (LFHCC) diets, 1 supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs)). 39% and 87% of subjects classified as normal and overweight by BMI were obese according to their BF%. Individuals classified as obese by BMI (± 30 kg/m2) and BF% (± 25% (men) and ± 35% (women)) (OO, n = 284) had larger waist and hip measurements, higher BMI and were heavier (P < 0.001) than those classified as non-obese by BMI but obese by BF% (NOO, n = 92). OO individuals displayed a more pro-inflammatory (higher C reactive protein (CRP) and leptin), pro-thrombotic (higher plasminogen activator inhibitor-1 (PAI-1)), pro-atherogenic (higher leptin/adiponectin ratio) and more insulin resistant (higher HOMA-IR) metabolic profile relative to the NOO group (P < 0.001). Interestingly, tumour necrosis factor alpha (TNF-α) concentrations were lower post-intervention in NOO individuals compared to OO subjects (P < 0.001). In conclusion, assessing BF% and BMI as part of a metabotype may help identify individuals at greater cardiometabolic risk than BMI alone.
Resumo:
Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.