910 resultados para Process models
Resumo:
This paper presents the design and implementation of an intelligent control system based on local neurofuzzy models of the milling process relayed through an Ehternet-based application. Its purpose is to control the spindle torque of a milling process by using an internal model control paradigm to modify the feed rate in real time. The stabilization of cutting cutting torque is especially necessary in milling processes such as high-spedd roughing of steel moulds and dies tha present minor geometric uncertainties. Thus, maintenance of the curring torque increaes the material removal rate and reduces the risk of damage due to excessive spindle vibration, a very sensitive and expensive component in all high-speed milling machines. Torque control is therefore an interesting challenge from an industrial point of view.
Resumo:
The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
Some neural bruise prediction models have been implemented in the laboratory, for the most traded fruit species and varieties, allowing the prediction of the acceptability or rejectability for damages, with respect to the EC Standards. Different models have been built for both quasi-static (compression) and dynamic (impact) loads covering the whole commercial ripening period of fruits. A simulation process has been developed gathering the information on laboratory bruise models and load sensor calibrations for different electronic devices (IS-100 and DEA-1, for impact and compression loads respectively). Some evaluation methodology has been designed gathering the information on the mechanical properties of fruits and the loading records of electronic devices. The evaluation system allows to determine the current stage of fruit handling process and machinery.
Resumo:
Automated and semi-automated accessibility evaluation tools are key to streamline the process of accessibility assessment, and ultimately ensure that software products, contents, and services meet accessibility requirements. Different evaluation tools may better fit different needs and concerns, accounting for a variety of corporate and external policies, content types, invocation methods, deployment contexts, exploitation models, intended audiences and goals; and the specific overall process where they are introduced. This has led to the proliferation of many evaluation tools tailored to specific contexts. However, tool creators, who may be not familiar with the realm of accessibility and may be part of a larger project, lack any systematic guidance when facing the implementation of accessibility evaluation functionalities. Herein we present a systematic approach to the development of accessibility evaluation tools, leveraging the different artifacts and activities of a standardized development process model (the Unified Software Development Process), and providing templates of these artifacts tailored to accessibility evaluation tools. The work presented specially considers the work in progress in this area by the W3C/WAI Evaluation and Report Working Group (ERT WG)
Resumo:
In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.
Resumo:
Los modelos de simulación de cultivos permiten analizar varias combinaciones de laboreo-rotación y explorar escenarios de manejo. El modelo DSSAT fue evaluado bajo condiciones de secano en un experimento de campo de 16 años en la semiárida España central. Se evaluó el efecto del sistema de laboreo y las rotaciones basadas en cereales de invierno, en el rendimiento del cultivo y la calidad del suelo. Los modelos CERES y CROPGRO se utilizaron para simular el crecimiento y rendimiento del cultivo, mientras que el modelo DSSAT CENTURY se utilizó en las simulaciones de SOC y SN. Tanto las observaciones de campo como las simulaciones con CERES-Barley, mostraron que el rendimiento en grano de la cebada era mas bajo para el cereal continuo (BB) que para las rotaciones de veza (VB) y barbecho (FB) en ambos sistemas de laboreo. El modelo predijo más nitrógeno disponible en el laboreo convencional (CT) que en el no laboreo (NT) conduciendo a un mayor rendimiento en el CT. El SOC y el SN en la capa superficial del suelo, fueron mayores en NT que en CT, y disminuyeron con la profundidad en los valores tanto observados como simulados. Las mejores combinaciones para las condiciones de secano estudiadas fueron CT-VB y CT-FB, pero CT presentó menor contenido en SN y SOC que NT. El efecto beneficioso del NT en SOC y SN bajo condiciones Mediterráneas semiáridas puede ser identificado por observaciones de campo y por simulaciones de modelos de cultivos. La simulación del balance de agua en sistemas de cultivo es una herramienta útil para estudiar como el agua puede ser utilizado eficientemente. La comparación del balance de agua de DSSAT , con una simple aproximación “tipping bucket”, con el modelo WAVE más mecanicista, el cual integra la ecuación de Richard , es un potente método para valorar el funcionamiento del modelo. Los parámetros de suelo fueron calibrados usando el método de optimización global Simulated Annealing (SA). Un lisímetro continuo de pesada en suelo desnudo suministró los valores observados de drenaje y evapotranspiración (ET) mientras que el contenido de agua en el suelo (SW) fue suministrado por sensores de capacitancia. Ambos modelos funcionaron bien después de la optimización de los parámetros de suelo con SA, simulando el balance de agua en el suelo para el período de calibración. Para el período de validación, los modelos optimizados predijeron bien el contenido de agua en el suelo y la evaporación del suelo a lo largo del tiempo. Sin embargo, el drenaje fue predicho mejor con WAVE que con DSSAT, el cual presentó mayores errores en los valores acumulados. Esto podría ser debido a la naturaleza mecanicista de WAVE frente a la naturaleza más funcional de DSSAT. Los buenos resultados de WAVE indican que, después de la calibración, este puede ser utilizado como "benchmark" para otros modelos para periodos en los que no haya medidas de campo del drenaje. El funcionamiento de DSSAT-CENTURY en la simulación de SOC y N depende fuertemente del proceso de inicialización. Se propuso como método alternativo (Met.2) la inicialización de las fracciones de SOC a partir de medidas de mineralización aparente del suelo (Napmin). El Met.2 se comparó con el método de inicialización de Basso et al. (2011) (Met.1), aplicando ambos métodos a un experimento de campo de 4 años en un área en regadío de España central. Nmin y Napmin fueron sobreestimados con el Met.1, ya que la fracción estable obtenida (SOC3) en las capas superficiales del suelo fue más baja que con Met.2. El N lixiviado simulado fue similar en los dos métodos, con buenos resultados en los tratamientos de barbecho y cebada. El Met.1 subestimó el SOC en la capa superficial del suelo cuando se comparó con una serie observada de 12 años. El crecimiento y rendimiento del cultivo fueron adecuadamente simulados con ambos métodos, pero el N en la parte aérea de la planta y en el grano fueron sobreestimados con el Met.1. Los resultados variaron significativamente con las fracciones iniciales de SOC, resaltando la importancia del método de inicialización. El Met.2 ofrece una alternativa para la inicialización del modelo CENTURY, mejorando la simulación de procesos de N en el suelo. La continua emergencia de nuevas variedades de híbridos modernos de maíz limita la aplicación de modelos de simulación de cultivos, ya que estos nuevos híbridos necesitan ser calibrados en el campo para ser adecuados para su uso en los modelos. El desarrollo de relaciones basadas en la duración del ciclo, simplificaría los requerimientos de calibración facilitando la rápida incorporación de nuevos cultivares en DSSAT. Seis híbridos de maiz (FAO 300 hasta FAO 700) fueron cultivados en un experimento de campo de dos años en un área semiárida de regadío en España central. Los coeficientes genéticos fueron obtenidos secuencialmente, comenzando con los parámetros de desarrollo fenológico (P1, P2, P5 and PHINT), seguido de los parámetros de crecimiento del cultivo (G2 and G3). Se continuó el procedimiento hasta que la salida de las simulaciones estuvo en concordancia con las observaciones fenológicas de campo. Después de la calibración, los parámetros simulados se ajustaron bien a los parámetros observados, con bajos RMSE en todos los casos. Los P1 y P5 calibrados, incrementaron con la duración del ciclo. P1 fue una función lineal del tiempo térmico (TT) desde emergencia hasta floración y P5 estuvo linealmente relacionada con el TT desde floración a madurez. No hubo diferencias significativas en PHINT entre híbridos de FAO-500 a 700 , ya que tuvieron un número de hojas similar. Como los coeficientes fenológicos estuvieron directamente relacionados con la duración del ciclo, sería posible desarrollar rangos y correlaciones que permitan estimar dichos coeficientes a partir de la clasificación del ciclo. ABSTRACT Crop simulation models allow analyzing various tillage-rotation combinations and exploring management scenarios. DSSAT model was tested under rainfed conditions in a 16-year field experiment in semiarid central Spain. The effect of tillage system and winter cereal-based rotations on the crop yield and soil quality was evaluated. The CERES and CROPGRO models were used to simulate crop growth and yield, while the DSSAT CENTURY was used in the SOC and SN simulations. Both field observations and CERES-Barley simulations, showed that barley grain yield was lower for continuous cereal (BB) than for vetch (VB) and fallow (FB) rotations for both tillage systems. The model predicted higher nitrogen availability in the conventional tillage (CT) than in the no tillage (NT) leading to a higher yield in the CT. The SOC and SN in the top layer, were higher in NT than in CT, and decreased with depth in both simulated and observed values. The best combinations for the dry land conditions studied were CT-VB and CT-FB, but CT presented lower SN and SOC content than NT. The beneficial effect of NT on SOC and SN under semiarid Mediterranean conditions can be identified by field observations and by crop model simulations. The simulation of the water balance in cropping systems is a useful tool to study how water can be used efficiently. The comparison of DSSAT soil water balance, with a simpler “tipping bucket” approach, with the more mechanistic WAVE model, which integrates Richard’s equation, is a powerful method to assess model performance. The soil parameters were calibrated by using the Simulated Annealing (SA) global optimizing method. A continuous weighing lysimeter in a bare fallow provided the observed values of drainage and evapotranspiration (ET) while soil water content (SW) was supplied by capacitance sensors. Both models performed well after optimizing soil parameters with SA, simulating the soil water balance components for the calibrated period. For the validation period, the optimized models predicted well soil water content and soil evaporation over time. However, drainage was predicted better by WAVE than by DSSAT, which presented larger errors in the cumulative values. That could be due to the mechanistic nature of WAVE against the more functional nature of DSSAT. The good results from WAVE indicate that, after calibration, it could be used as benchmark for other models for periods when no drainage field measurements are available. The performance of DSSAT-CENTURY when simulating SOC and N strongly depends on the initialization process. Initialization of the SOC pools from apparent soil N mineralization (Napmin) measurements was proposed as alternative method (Met.2). Method 2 was compared to the Basso et al. (2011) initialization method (Met.1), by applying both methods to a 4-year field experiment in a irrigated area of central Spain. Nmin and Napmin were overestimated by Met.1, since the obtained stable pool (SOC3) in the upper layers was lower than from Met.2. Simulated N leaching was similar for both methods, with good results in fallow and barley treatments. Method 1 underestimated topsoil SOC when compared with a 12-year observed serial. Crop growth and yield were properly simulated by both methods, but N in shoots and grain were overestimated by Met.1. Results varied significantly with the initial SOC pools, highlighting the importance of the initialization procedure. Method 2 offers an alternative to initialize the CENTURY model, enhancing the simulation of soil N processes. The continuous emergence of new varieties of modern maize hybrids limits the application of crop simulation models, since these new hybrids should be calibrated in the field to be suitable for model use. The development of relationships based on the cycle duration, would simplify the calibration requirements facilitating the rapid incorporation of new cultivars into DSSAT. Six maize hybrids (FAO 300 through FAO 700) were grown in a 2-year field experiment in a semiarid irrigated area of central Spain. Genetic coefficients were obtained sequentially, starting with the phenological development parameters (P1, P2, P5 and PHINT), followed by the crop growth parameters (G2 and G3). The procedure was continued until the simulated outputs were in good agreement with the field phenological observations. After calibration, simulated parameters matched observed parameters well, with low RMSE in most cases. The calibrated P1 and P5 increased with the duration of the cycle. P1 was a linear function of the thermal time (TT) from emergence to silking and P5 was linearly related with the TT from silking to maturity . There were no significant differences in PHINT between hybrids from FAO-500 to 700 , as they had similar leaf number. Since phenological coefficients were directly related with the cycle duration, it would be possible to develop ranges and correlations which allow to estimate such coefficients from the cycle classification.
Resumo:
In order to show the choice of transparency as the guiding principle of the accreditation process, the article evaluates its influence on the fundamental subprocess of self-evaluation, thereby confirming that transparency is an essential tool for continuous improvement of academic processes and those of educational quality management. It fosters educational innovation and permits the sustainability of the continuous accreditation process over time, resulting in greater probabilities of university self-regulation through systemization of the process, with the objective of continuous improvement of university degree programs. The article analyzes the influence of transparency on each activity of the self-evaluation process according to the Peruvian accreditation model prepared under the total quality approach, as a reference for other accreditation models, proposing concrete transparency actions and evaluating its influence on the stakeholder groups in the self-evaluation process, as well as on the efficiency and effectiveness of the process. It is concluded that transparency has a positive influence on the training of human capital and the formation of the university?s organizational culture, facilitating dissemination, understanding and involvement of the stakeholder groups in the continuous improvement of accreditation activities and increasing their acceptance of change and commitment to the process. It is confirmed that transparency contributes toward increasing the efficiency index of the self-evaluation process by reducing operating costs through adequate, accessible, timely contribution of information by the stakeholders and through the optimization of the time spent gathering relevant information. In addition, it is concluded that transparency contributes toward increasing the effectiveness index of self-evaluation by facilitating the achievement of its objectives through synthetic, useful, reliable interpretation of the education situation and the formulation of feasible improvement plans based on the adequacy, relevance, visibility, pertinence and truthfulness of the information analyzed.
Resumo:
This paper is an introduction of the regret theory-based scenario building approach combining with a modified Delphi method that uses an interactive process to design and assess four different TDM measures (i.e., cordon toll, parking charge, increased bus frequency and decreased bus fare). The case study of Madrid is used to present the analysis and provide policy recommendations. The new scenario building approach incorporates expert judgement and transport models in an interactive process. It consists of a two-round modified Delphi survey, which was answeared by a group of Spanish transport experts who were the participants of the Transport Engineering Congress (CIT 2012), and an integrated land-use and transport model (LUTI) for Madrid that is called MARS (Metropolitan Activity Relocation Simulator).