914 resultados para Power Network in Loop Simulation
Resumo:
We investigated the effect of morphological differences on neuronal firing behavior within the hippocampal CA3 pyramidal cell family by using three-dimensional reconstructions of dendritic morphology in computational simulations of electrophysiology. In this paper, we report for the first time that differences in dendritic structure within the same morphological class can have a dramatic influence on the firing rate and firing mode (spiking versus bursting and type of bursting). Our method consisted of converting morphological measurements from three-dimensional neuroanatomical data of CA3 pyramidal cells into a computational simulator format. In the simulation, active channels were distributed evenly across the cells so that the electrophysiological differences observed in the neurons would only be due to morphological differences. We found that differences in the size of the dendritic tree of CA3 pyramidal cells had a significant qualitative and quantitative effect on the electrophysiological response. Cells with larger dendritic trees: (1) had a lower burst rate, but a higher spike rate within a burst, (2) had higher thresholds for transitions from quiescent to bursting and from bursting to regular spiking and (3) tended to burst with a plateau. Dendritic tree size alone did not account for all the differences in electrophysiological responses. Differences in apical branching, such as the distribution of branch points and terminations per branch order, appear to effect the duration of a burst. These results highlight the importance of considering the contribution of morphology in electrophysiological and simulation studies.
Resumo:
Where users are interacting in a distributed virtual environment, the actions of each user must be observed by peers with sufficient consistency and within a limited delay so as not to be detrimental to the interaction. The consistency control issue may be split into three parts: update control; consistent enactment and evolution of events; and causal consistency. The delay in the presentation of events, termed latency, is primarily dependent on the network propagation delay and the consistency control algorithms. The latency induced by the consistency control algorithm, in particular causal ordering, is proportional to the number of participants. This paper describes how the effect of network delays may be reduced and introduces a scalable solution that provides sufficient consistency control while minimising its effect on latency. The principles described have been developed at Reading over the past five years. Similar principles are now emerging in the simulation community through the HLA standard. This paper attempts to validate the suggested principles within the schema of distributed simulation and virtual environments and to compare and contrast with those described by the HLA definition documents.
Resumo:
In situ precipitation measurements can extremely differ in space and time. Taking into account the limited spatial–temporal representativity and the uncertainty of a single station is important for validating mesoscale numerical model results as well as for interpreting remote sensing data. In situ precipitation data from a high resolution network in North-Eastern Germany are analysed to determine their temporal and spatial representativity. For the dry year 2003 precipitation amounts were available with 10 min resolution from 14 rain gauges distributed in an area of 25 km 25 km around the Meteorological Observatory Lindenberg (Richard-Aßmann Observatory). Our analysis reveals that short-term (up to 6 h) precipitation events dominate (94% of all events) and that the distribution is skewed with a high frequency of very low precipitation amounts. Long-lasting precipitation events are rare (6% of all precipitation events), but account for nearly 50% of the annual precipitation. The spatial representativity of a single-site measurement increases slightly for longer measurement intervals and the variability decreases. Hourly precipitation amounts are representative for an area of 11 km 11 km. Daily precipitation amounts appear to be reliable with an uncertainty factor of 3.3 for an area of 25 km 25 km, and weekly and monthly precipitation amounts have uncertainties of a factor of 2 and 1.4 when compared to 25 km 25 km mean values.
Resumo:
Solar irradiance measurements from a new high density urban network in London are presented. Annual averages demonstrate that central London receives 30 ± 10 Wm-2 less solar irradiance than outer London at midday, equivalent to 9 ± 3% less than the London average. Particulate matter and AERONET measurements combined with radiative transfer modeling suggest that the direct aerosol radiative effect could explain 33 to 40% of the inner London deficit and a further 27 to 50% could be explained by increased cloud optical depth due to the aerosol indirect effect. These results have implications for solar power generation and urban energy balance models. A new technique using ‘Langley flux gradients’ to infer aerosol column concentrations over clear periods of three hours has been developed and applied to three case studies. Comparisons with particulate matter measurements across London have been performed and demonstrate that the solar irradiance measurement network is able to detect aerosol distribution across London and transport of a pollution plume out of London.
Resumo:
In this paper we introduce a new Wiener system modeling approach for memory high power amplifiers in communication systems using observational input/output data. By assuming that the nonlinearity in the Wiener model is mainly dependent on the input signal amplitude, the complex valued nonlinear static function is represented by two real valued B-spline curves, one for the amplitude distortion and another for the phase shift, respectively. The Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first order derivatives recursion. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.
Resumo:
The National Grid Company plc. owns and operates the electricity transmission network in England and Wales, the day to day running of the network being carried out by teams of engineers within the national control room. The task of monitoring and operating the transmission network involves the transfer of large amounts of data and a high degree of cooperation between these engineers. The purpose of the research detailed in this paper is to investigate the use of interfacing techniques within the control room scenario, in particular, the development of an agent based architecture for the support of cooperative tasks. The proposed architecture revolves around the use of interface and user supervisor agents. Primarily, these agents are responsible for the flow of information to and from individual users and user groups. The agents are also responsible for tackling the synchronisation and control issues arising during the completion of cooperative tasks. In this paper a novel approach to human computer interaction (HCI) for power systems incorporating an embedded agent infrastructure is presented. The agent architectures used to form the base of the cooperative task support system are discussed, as is the nature of the support system and tasks it is intended to support.
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD.
Resumo:
Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.