980 resultados para Powders: solid state reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gallium-doped zinc oxide (ZnO:Ga 1, 2 3, 4 and 5 at%) samples were prepared in powder form by modifying the Pechini method. The formation of zinc gallate (ZnGa2O4) With the spinel crystal structure was observed even in ZnO:Ga 1 at% by X-ray diffraction. The presence of ZnGa2O4 in ZnO:Ga samples was also evidenced by luminescence spectroscopy through its blue emission at 430 nm, assigned to charge transfer between Ga3+ at regular octahedral symmetry and its surrounding O2- ions. The amount of ZnGa2O4 increases as the dopant concentration increases, as observed by the quantitative phase analysis by the Rietveld method. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxysulfide compounds La2O2S:Eu and Y2O2S were obtained directly from thermodecomposition of the respective oxalate compounds under argon and sulfur vapor, the obtained compounds were analyzed by infrared spectroscopy, X ray diffraction and luminescence spectroscopy. The particle size distribution and crystalline habit of the compounds were observed by scanning electron microscopy. Although the particle size of the oxysulfide was found to be 30%-40% smaller than the precursor oxalates, the initial morphology was completely maintained, which indicates the occurrence of a topochemical reaction from oxalates to oxysulfides. © Gauthier-Villars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron Paramagnetic Resonance (EPR) spectra have been obtained at room temperature and at X-band in powders of SnO2 doped with Mn from 0.3 to 10% and submitted to heat treatment from 500 to 900 °C. Mn ions are probably located at particle surfaces as Mn2+, evidenced by its single EPR line which narrows by the exchange interaction effect due to particle growth observed by the BET technique. In samples doped above 1% formation Of Mn3O4 is detected on particle surfaces and a small quantity of Mn is thermally diffused into the bulk as Mn4+. Powders compacted and sintered at 1300 °C confirmed that Mn2+ ions remain at grain boundaries acting as densifying agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral hydrolysis reaction of post-consumer poly(ethylene terephthalate) in solid state was studied through the reaction of the polymer with water at the molar ratio 1:91 with autogenous pressure. Two sizes of post-consumer PET flakes and temperatures of 135 °C, 170°C and 205°C with pressures of 4.0 atm, 7.5 atm and 13.5 atm, respectively, were considered. With reaction time equal to 6h, the method reached 99% depolymerization at 205°C, 8.2% at 170 °C and 1.7% at 135°C. The reaction extension was measured by separating the terephthalic acid formed in the process and calculating by gravimetry how much material could still be reacted. Through the viscosimetry of diluted, solutions and the counting of carboxylic end groups in the remaining material from the gravimetric assay, it was possible to suggest that the reaction occurs randomly and in the whole volume of the polymeric particle and not solely on the surface. The terephthalic acid obtained and then purified was characterized by elemental analysis, magnetic nuclear resonance, size and panicle size distribution and spectrophotometry in the visible spectrum, and it was similar to the petrochemical equivalent, with purity recorded in carbon base equal to 99.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main topic of my Ph.D. thesis is the study of nucleophilic and electrophilic aromatic substitution reaction, in particular from a mechanistic point of view. The research was mainly focused on the reactivity of superactivated aromatic systems. In spite of their high reactivity (hence the high reaction’s rate), we were able to identify and in some case to isolate -complexes until now only hypothesized. For example, interesting results comes from the study of the protonation of the supernucleophiles tris(dialkylamino)benzenes. However, the best result obtained in this field was the isolation and structural characterization of the first stables zwitterionic Wheland-Meisenheimer complexes by using 2,4-dipyrrolidine-1,3-thiazole as supernucleophile and 4,6-dinitrobenzofuroxan or 4,6-dinitrotetrazolepyridine as superelectrophile. These reactions were also studied by means of computational chemistry, which allowed us to better investigate on the energetic and properties of the reactions and reactants studied. We also discovered, in some case fortuitously, some relevant properties and application of the compounds we synthesized, such as fluorescence in solid state and nanoparticles, or textile dyeing. We decided to investigate all these findings also by collaborating with other research groups. During a period in the “Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes-SRSMC, Université de Lorraine et CNRS, France, I carried out computational studies on new iron complexes for the use as dyes in Dye Sensitized Solar Cells (DSSC). Furthermore, thanks to this new expertise, I was involved in a collaboration for the study of the ligands’ interaction in biological systems. A collaboration with University of Urbino allowed us to investigate on the reactivity of 1,2-diaza-1,3-dienes toward nucleophiles such as amino and phosphine derivatives, which led to the synthesis of new products some of which are 6 or 7 member heterocycles containing both phosphorus and nitrogen atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Synthese von nanostrukturierten Antimoniden, wobei die folgenden beiden Themen bearbeitet wurden: rnAus chemischer Sicht wurden neue Synthesewege entwickelt, um Nanopartikel der Verbindungen in den binären Systemen Zn-Sb und Fe-Sb herzustellen (Zn4Sb3, ZnSb, FeSb2, Fe1+xSb). Anders als in konventionellen Festkörperreaktionen, die auf die Synthese von Bulk-Materialien oder Einkristallen zielen, muss die Synthese von Nanopartikeln Agglomerate und Ostwald-Wachstum vermeiden. Daher benötigen annehmbare Reaktionszeiten und vergleichsweise tiefe Reaktionstemperaturen kurze Diffusionswege und tiefe Aktivierungsbarrieren. Demzufolge bedient sich die Synthese der Reaktion von Antimon-Nanopartikeln und geeigneten molekularen oder nanopartikulären Edukten der entsprechenden Übergangsmetalle. Zusätzlich wurden anisotrope ZnSb Strukturen synthetisiert, indem eine Templat-Synthese mit Hilfe von anodisierten Aluminiumoxid- oder Polycarbonat-Membranen angewandt wurde. rnDie erhaltenen Produkte wurden hauptsächlich durch Röntgen-Diffraktion und Elektronenmikroskopie untersucht. Die Auswertung der Pulver Röntgendiffraktions-Daten stellte eine Herausforderung dar, da die Nanostrukturierung und die Anwesenheit von mehreren Phasen zu verbreiterten und überlagernden Reflexen führen. Zusätzliche Fe-Mößbauer Messungen wurden im Falle der Fe-Sb Produkte vorgenommen, um detailliertere Informationen über die genaue Zusammensetzung zu erhalten. Die erstmals hergestellte Phase Zn1+xSb wurde einer detaillierten Kristallstrukturanalyse unterzogen, die mit Hilfe einer neuen Diffraktionsmethode, der automatisierten Elektronen Diffraktions Tomographie, durchgeführt wurde.rnrnAus physikalischer Sicht sind Zn4Sb3, ZnSb und FeSb2 interessante thermoelektrische Materialien, die aufgrund ihrer Fähigkeit thermische in elektrische Energie umzuwandeln, großes Interesse geweckt haben. Nanostrukturierte thermoelektrische Materialien zeigen dabei eine höhere Umwandlungseffizienz zu erhöhen, da deren thermische Leitfähigkeit herabgesetzt ist. Da thermoelektrische Bauteile aus dichten Bulk-Materialien gefertigt werden, spielte die Verfestigung der synthetisierten nanopartikulären Pulver eine große Rolle. Die als „Spark Plasma Sintering“ bezeichnete Methode wurde eingesetzt, um die Proben zu pressen. Dies ermöglicht schnelles Heizen und Abkühlen der Probe und kann so das bei klassischen Heißpress-Methoden unvermeidliche Kristallitwachstum verringern. Die optimalen Bedingungen für das Spark Plasma Sintern zu finden, ist Inhalt von bestehender und weiterführender Forschung. rnEin Problem stellt die Stabilität der Proben während des Sinterns dar. Trotz des schnellen Pressens wurde eine teilweise Zersetzung im Falle des Zn1+xSb beobachtet, wie mit Hilfe von Synchrotrondiffraktionsuntersuchungen aufgedeckt wurde. Morphologie und Dichte der verschiedenen verfestigten Materialien wurden mittels Rasterelektronenmikroskopie und Lasermikroskopie bestimmt. Die Gitterdynamik wurde mit Hilfe von Wärmekapazitätsmessungen- und inelastischer Kern-Streuung untersucht. Die Wärmeleitfähigkeit der nanostrukturierten Materialien ist im Vergleich zu den Festkörpern ist drastisch reduziert - im Falle des FeSb2 um mehr als zwei Größenordnungen. Abhängig von der Zusammensetzung und mechanischen Härte wurden für einen Teil der verfestigten Nanomaterialien die thermoelektrische Eigenschaften, wie Seebeck Koeffizient, elektrische und Wärmeleitfähigkeit, gemessen.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the application of 59Co NMR to the study of naturally occurring cobalamins. Targets of these investigations included vitamin B12, the B12 coenzyme, methylcobalamin, and dicyanocobyrinic acid heptamethylester. These measurements were carried out on solutions and powders of different origins, and repeated at a variety of magnetic field strengths. Particularly informative were the solid-state central transition NMR spectra, which when combined with numerical line shape analyses provided a clear description of the cobalt coupling parameters. These parameters showed a high sensitivity to the type of ligands attached to the metal and to the crystallization history of the sample. 59Co NMR determinations also were carried out on synthetic cobaloximes possessing alkyl, cyanide, aquo, and nitrogenated axial groups, substituents that paralleled the coordination of the natural compounds. These analogs displayed coupling anisotropies comparable to those of the cobalamins, as well as systematic up-field shifts that can be rationalized in terms of their stronger binding affinity to the cobalt atom. Cobaloximes also displayed a higher regularity in the relative orientations of their quadrupole and shielding coupling tensors, reflecting a higher symmetry in their in-plane coordination. For the cobalamines, poor correlations were observed between the values measured for the quadrupole couplings in the solid and the line widths observed in the corresponding solution 59Co NMR resonances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decomposition of drugs in the solid state has been studied using aspirin and salsalate as models. The feasibility of using suspension systems for predicting the stability of these drugs in the solid state has been investigated.. It has been found that such systems are inappropriate in defining the effect of excipients on 'the decomposition of the active drug due to chqnges in the degradation pathway. Using a high performance liquid chromatographic method, magnesium stearate was shown to induce the formation of potentlally immunogenic products in aspirin powders. These products which included salicylsalicylic acid .and acetylsalicyclsalicylic acid were not detected in aspirin suspensions which had undergone the same extent of decomposition. By studying the effect of pH and of added excipients on the rate of decomposition of aspirin in suspension systems, it has been shown that excipients such as magnesium stearate containing magnesium oxide, most probably enhance the decomposition of both aspirin and salsalate by alkalinising the aqueous phase. In the solid state, pH effects produced by excipients appear to be relatively unimportant. Evidence is presented to suggest that the critical parameter is a depression in melting point induced by: the added excipient. Microscopical examination in fact showed the formation of clear liquid layers in aspirin samples containing added magnesium stearate but not in control samples. Kinetic equations which take into account both the diffusive barrier presented by the liquid films and the. geometry of the aspirin crystals were developed. Fitting of the .experimental data to these equations showed good agreement. with the postulated theory. Monitorjng of weight issues during the decomposition of aspirin revealed that in the solid systems studied where the bulk of the decomposition product sublimes, it is possible to estimate the extent of degradation from the residual weight, provided the initial weight is known. The corollary is that in such open systems, monitoring of decomposition products is inadequate for assessing the extent of decomposition. In addition to the magnesium stearate-aspirin system, mapyramine maleate-aspirin mixtures were used to model interactive systems. Work carried out in an attempt to stabilise such systems included microencapsulation and film coating. The protection obtained was dependent on the interactive species used. Gelatin for example appeared to stabilise aspirin against the adverse effects of magnesium stearate but increased its decomposition in the presence of mapyramine maleate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Néel temperature TN is significantly lower than the Curie-Weiss temperature (:&thetas;: ∼ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Néel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in the AF phase. The results from inelastic neutron scattering show that spin waves have a clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. This work finds the strong spin-lattice coupling in this novel complex material. The interplay between the two degrees of freedom results an interesting phase diagram. Further research is needed when large single crystal samples are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.