981 resultados para Polymeric composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial adhesion to silicone elastomer biomaterials is a major problem often resulting in infection and medical device failure. Several strategies have been employed to modulate eukaryotic cell adhesion and to hamper bacterial adherence to polymeric biomaterials. Chemical modification of the surface by grafting of polyethylene glycol (PEG) chains or the incorporation of non-antibiotic antimicrobial agents such as triclosan into the biomaterial matrix may reduce bacterial adhesion. Here, such strategies are simultaneously applied to the preparation of both condensation-cure and addition-cure silicone elastomer systems, seeking a sustained release antimicrobial device biomaterial. The influence of triclosan incorporation and degree of pegylation on antimicrobial release, surface microbial adherence and persistence (Escherichia coli and Staphylococcus epidermidis) were evaluated in vitro. Non-pegylated silicone elastomers provided an increased percentage release of triclosan extending over a relatively short duration (99% release by day 64) compared with their pegylated (4% w/w) counterparts (65% and 72% release by day 64, for condensation and addition-cure systems respectively). Viable E. coli adherence to a non-pegylated silicone elastomer containing 1% w/w triclosan was reduced by over 99% after 24 h compared to the non-pegylated silicone elastomer containing no triclosan. No viable S. epidermidis adhered to any of the triclosan-loaded (>0.1% w/w) formulations other than the control. Persistence of the antimicrobial activity of the triclosan-loaded pegylated silicone elastomers continued for at least 70 days compared to the triclosan-loaded non-pegylated elastomers (at least 49 days). Understanding how PEG affects the release of triclosan from silicone elastomers may prove useful in the development of a biomaterial providing prolonged, effective antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose-magnetite composites have been prepared by suspension and dispersion of magnetite particles in a homogenous ionic liquid solution of cellulose, followed by regeneration into water, enabling the preparation of magnetically responsive films, flocs, fibers, or beads. The materials prepared were ferromagnetic, with a small superparamagnetic response, characteristic of the initial magnetite added. X-ray diffraction data indicated that the magnetite particles were chemically unaltered after encapsulation with an average particle size of approximately 25 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine serum albumin (BSA) is a commonly used model protein in the development of pharmaceutical formulations. In order to assay its release from various dosage forms, either the bicinchoninic acid (BCA) assay or a more specific size-exclusion high performance liquid chromatography (SE-HPLC) method are commonly employed. However, these can give erroneous results in the presence of some commonly-used pharmaceutical excipients. We therefore investigated the ability of these methods to accurately determine BSA concentrations in pharmaceutical formulations that also contained various polymers and compared them with a new and compared with a new reverse-phase (RP)–HPLC technique. We found that the RP-HPLC technique was the most suitable method. It gave a linear response in the range of 0.5 -100 µg/ml with a correlation coefficient of 0.9999, a limit of detection of 0.11 µg/ml and quantification of 0.33 µg/ml. The performed ‘t’ test for the estimated and theoretical concentration indicated no significant difference between them providing the accuracy. Low % relative standard deviation values (0.8-1.39%) indicate the precision of the method. Furthermore, the method was used to quantify in vitro BSA release from polymeric freeze-dried formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colourless single crystals of [Ag-3(Dat)(2)](NO3)(3) were obtained from a reaction of silver(l) nitrate and 3,5-dimethyl-4-amino-1,2,4-triazole (Dat). In the crystal structure (orthorhombic, Fdd2, Z = 8, a = 1100.1(2), b = 3500.3(2), c = 1015.4(3) pm, R, = 0.0434) there are two crystallographically non-equivalent silver sites in a one (Ag1) to two ratio (Ag2). Both resemble linear N-Ag-N coordination although angles are 163 degrees and 144 degrees, respectively Each Dat ligand coordinates with the two ring nitrogen atoms at 216 to 219 pm and with one amino-nitrogen atom at 229 pro. According to the composition [Ag-3(Dat)(2)](3+) = [(Dat)Ag-3/2](3+), a polymeric structure is built with all Ag+ ions bridging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents the development of an analytical model to predict the elastic stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of altering the weaving parameters and constituent material types. The present approach formulates expressions at the micro level with the aim of calculating more representative volume fractions of a group of elements to the layer. The rationale in representing the volume fractions within the unit cell more accurately was to improve the elastic stiffness predictions compared to existing analytical modelling approaches. The models developed in this work show good agreement between experimental data and improvement on existing predicted values by models published in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).