969 resultados para Polymeric binders


Relevância:

10.00% 10.00%

Publicador:

Resumo:

为探讨爪哇伪枝藻胞外多糖(Extracellular polymeric substances ofScytonema javanicum,EPS)诱导人表皮癌A431细胞凋亡及其对凋亡相关基因caspase-3、bcl-2和bax表达的影响,本实验利用MTT法检测细胞生长抑制情况;HE染色法及透射电镜进行形态学观察;单细胞凝胶电泳法(SCGE/彗星电泳)分析DNA受损情况;免疫组织化学法检测细胞内caspase-3、bcl-2和bax表达水平。结果显示EPS能显著抑制A431细胞增殖,并呈时间和剂量依赖

Relevância:

10.00% 10.00%

Publicador:

Resumo:

雨季来临时,干藻重新吸收水分,光合活性恢复,迅速生长。微鞘藻(Microcoleus vaginatus)藻体在失水过程中,光合活性降低;而干藻接种到流沙后,恢复生长,在生长后期,生物量可达27μg/cm2土壤。在重吸水中,离子对光合活性的恢复具有重要作用,相对于去离子水来说,BG-11培养液处理后活性恢复较高;K+和Mg2+的缺失,对光合活性有抑制作用,而Ca2+的缺失,造成光合活性恢复的延缓;较高浓度的胞外多糖(Extracellular polymeric substances,EPS)和热水溶性多

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplanes as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, we present a 40 Gb/s optical backplane demonstrator based on the use of polymer multimode waveguides and a regenerative shared bus architecture. The system allows bus extension by cascading multiple polymeric bus modules through 3R regenerator units enabling the connection of an arbitrary number of electrical cards onto the bus. The proof-ofprinciple demonstrator reported here is formed with low-cost, commercially-available active devices and electronic components mounted on conventional FR4 substrates and achieves error-free 4×10 Gb/s optical interconnection between any two card interfaces on the bus. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multimode polymer waveguides are an attractive transmission medium for board-level optical links as they provide high bandwidth, relaxed alignment tolerances, and can be directly integrated onto conventional printed circuit boards. However, the performance of multimode waveguide components depends on the launch conditions at the component input, complicating their use in topologies that require the concatenation of multiple multimode components. This paper presents key polymer components for a multichannel optical bus and reports their performance under different launch conditions, enabling useful rules that can be used to design complex interconnection topologies to be derived. The components studied are multimode signal splitters and combiners, 90°-crossings, S-bends, and 90°-bends. By varying the width of the splitter arms, a splitting ratio between 1% and 95% is achieved from the 1 × 2 splitters, while low-loss signal combining is demonstrated with the waveguide combiners. It is shown that a 3 dB improvement in the combiner excess loss can be achieved by increasing the bus width by 50 μm. The worst-case insertion loss of 50 × 100 μm waveguide crossings is measured to be 0.1 dB/crossing. An empirical method is proposed and used to estimate the insertion losses of on-board optical paths of a polymeric four-channel optical bus module. Good agreement is achieved between the predicted and measured values. Although the components and empirical method have been tailored for use in a multichannel optical bus architecture, they can be used for any on-board optical interconnection topology. © 1983-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunoglobulin (Ig) joining (J) chain plays an important role in the formation of polymeric Igs and their transport into secretions. In the present study, the cDNA sequence of J chain has been cloned from the Chinese soft-shelled turtle (Pelodiscus sinensis) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The cDNA sequence is 2347 bp in length and contains an open reading frame of 480 bp encoding 160 aa including the signal sequence. The deduced amino acid sequence has a high degree of homology with that of an already reported turtle J chain (80.7%), and of chicken (71.3%). By using real-time quantitative RT-PCR analysis, a significant up-regulation of J-chain transcripts was observed in spleen, kidney and blood of turtles injected with inactivated Aeromonas hydrophila, indicating the immune role of J chain in response to bacterial infection. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrolysis behaviors of polyferric sulfate (PFS) and ferric sulfate (FS) under conditions similar to raw wastewater were investigated and the coagulation of biologically pretreated molasses wastewater using PFS and FS was evaluated by studying coagulation efficiency, zeta potential and microscopic surface morphology of flocs. Experimental results show that the hydrolysis behavior of PFS is different from that of FS on the basis of ferron assay. In the case of FS, fast-reacting Fe(III) polymers were the dominant polynuclear species while large fraction of slow-reacting iron polymers is present in PFS. Despite slightly fewer dosages of PFS required as compared to FS, there is no marked difference in the coagulation of molasses effluent between PFS and FS, especially at the optimum dosages. Both coagulants destabilize organic compounds predominantly through charge neutralization-precipitation mechanism. Hydrolysis rate of PFS in synthetic solution is appreciably different from that in raw wastewater. This may due to the effect of sulfate anion introduced as counter-ion as well as depolymerization of larger polymeric Fe(III) species by the organic ligands present in molasses effluent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first multi-channel optical backplane demonstrator using on-board multimode polymer waveguides and a scalable shared-bus regenerative architecture is reported. The system allows bus extension by cascading multiple polymeric bus modules, and enables error-free 4×10 Gb/s interconnection between any two card interfaces on the bus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular poly(3-hexylthiophene) (P3HT) with newly designed N = 18 armchair graphene nanoribbons (GNRs). The latter, prepared by a bottom-up solution synthesis, are expected to form solid aggregates which cannot be easily interfaced with metallic electrodes, limiting charge injection at metal-semiconductor interfaces, and are characterized by a finite size, thus by grain boundaries, which negatively affect the charge transport within the film. Both P3HT and GNRs are soluble/dispersible in organic solvents, enabling the use of a single step co-deposition process. The resulting OFETs show a three-fold increase in the charge carrier mobilities in blend films, when compared to pure P3HT devices. This behavior can be ascribed to GNRs, and aggregates thereof, facilitating the transport of the charges within the conduction channel by connecting the domains of the semiconductor film. The electronic characteristics of the devices such as the Ion/Ioff ratio are not affected by the addition of GNRs at different loads. Studies of the electrical characteristics under illumination for potential use of our blend films as organic phototransistors (OPTs) reveal a tunable photoresponse. Therefore, our strategy offers a new method towards the enhancement of the performance of OFETs, and holds potential for technological applications in (opto)electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.