952 resultados para Polymeric Flocculants
Resumo:
The carbazole moiety is a component of many important pharmaceuticals including anticancer and anti-HIV agents and is commonly utilized in the production of modern polymeric materials with novel photophysical and electronic properties. Simple carbazoles are generally produced via the aromatization of the respective tetrahydrocarbazole (THCZ). In this work, density functional theory calculations are used to model the reaction pathway of tetrahydrocarbazole aromatization over Pd(111). The geometry of each of the intermediate surface species has been determined and how each structure interacts with the metal surface addressed. The reaction energies and barriers of each of the elementary surface reactions have also been calculated, and a detailed analysis of the energetic trends performed. Our calculations have shown that the surface intermediates remain fixed to the surface via the aromatic ring in a manner similar to that of THCZ. Moreover, the aliphatic ring becomes progressively more planer with the dissociation of each subsequent hydrogen atom. Analysis of the reaction energy profile has revealed that the trend in reaction barriers is determined by the two factors: (i) the strength of the dissociating ring-H bond and (ii) the subsequent gain in energy due to the geometric relaxation of the aliphatic ring. (c) 2008 American Institute of Physics.
Resumo:
The work described in this paper demonstrates a combined novel approach to the preparation of drug loaded poly(e-caprolactone) layered silicate nanocomposites using hot melt extrusion, a continuous process in contrast to the normal batch type processing used to prepare polymeric drug delivery systems, and most significantly the use of high surface area, large aspect ratio inorganic nanoplatelets to retard drug release. The methodology and results described in this article are significant and could equally be applied to the controlled/retarded release of any bio-active molecule (pharmaceutical, nutraceutical, protein, DNA/iRNA, anti-microbial, anti-coagulant, etc.) from biopolymers and the production of medical devices from such composite materials.
Resumo:
Microbial adhesion to silicone elastomer biomaterials is a major problem often resulting in infection and medical device failure. Several strategies have been employed to modulate eukaryotic cell adhesion and to hamper bacterial adherence to polymeric biomaterials. Chemical modification of the surface by grafting of polyethylene glycol (PEG) chains or the incorporation of non-antibiotic antimicrobial agents such as triclosan into the biomaterial matrix may reduce bacterial adhesion. Here, such strategies are simultaneously applied to the preparation of both condensation-cure and addition-cure silicone elastomer systems, seeking a sustained release antimicrobial device biomaterial. The influence of triclosan incorporation and degree of pegylation on antimicrobial release, surface microbial adherence and persistence (Escherichia coli and Staphylococcus epidermidis) were evaluated in vitro. Non-pegylated silicone elastomers provided an increased percentage release of triclosan extending over a relatively short duration (99% release by day 64) compared with their pegylated (4% w/w) counterparts (65% and 72% release by day 64, for condensation and addition-cure systems respectively). Viable E. coli adherence to a non-pegylated silicone elastomer containing 1% w/w triclosan was reduced by over 99% after 24 h compared to the non-pegylated silicone elastomer containing no triclosan. No viable S. epidermidis adhered to any of the triclosan-loaded (>0.1% w/w) formulations other than the control. Persistence of the antimicrobial activity of the triclosan-loaded pegylated silicone elastomers continued for at least 70 days compared to the triclosan-loaded non-pegylated elastomers (at least 49 days). Understanding how PEG affects the release of triclosan from silicone elastomers may prove useful in the development of a biomaterial providing prolonged, effective antimicrobial activity.
Resumo:
This investigation describes the formulation and characterization of theologically structured vehicles (RSVs) designed for improved drug delivery to the vagina. Interactive, multicomponent, polymeric platforms were manufactured containing hydroxyethylcellulose (HEC, 5% w/w) polyvinylpyrrolidone (PVP, 4% w/w), Pluronic (PL, 0 or 10% w/w), and either polycarbophil (PC, 3% w/w) or poly(methylvinylether-co-maleic anhydride) (Gantrez S97, 3% w/w) as a mucoadhesive agent. The rheological (torsional and dynamic), mechanical (compressional), and mucoadhesive properties were characterized and shown to be dependent upon the mucoadhesive agent used and the inclusion/exclusion of PL. The dynamic theological properties of the gel platforms were also assessed following dilution with simulated vaginal fluid (to mimic in vivo dilution). RSVs containing PC were more rheologically structured than comparator formulations containing GAN. This trend was also reflected in formulation hardness, compressibility, consistency, and syringeability. Moreover, formulations containing PL (10% w/w) were more theologically structured than formulations devoid of PL. Dilution with simulated vaginal fluids significantly decreased rheological structure, although RSVs still retained a highly elastic stnicture (G' > G '' and tan delta <1). Furthermore, RSVs exhibited sustained drug release properties that were shown to be dependent upon their rheological structure. It is considered that these semisolid drug delivery systems may be useful as site-retentive platforms for the sustained delivery of therapeutic agents to the vagina.
Resumo:
Background: The treatment of solid tumours and angiogenic ocular diseases by photodynamic therapy (PDT) requires the injection of a photosensitiser (PS) to destroy target cells through a combination of visible light irradiation and molecular oxygen. There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic PDT. Objective: This article aims to review recent developments in systemic carrier delivery platforms for PDT, with an emphasis on target specificity. Methods: Recent publications, spanning the last five years, concerning delivery carrier platforms for systemic PDT were reviewed, including PS conjugates, dendrimers, micelles, liposomes and nanoparticles. Results/conclusion: PS conjugates and supramolecular delivery platforms can improve PDT selectivity by exploiting cellular and physiological specificities of the targeted tissue. Overexpression of receptors in cancer and angiogenic endothelial cells allows their targeting by affinity-based moieties for the selective uptake of PS conjugates and encapsulating delivery carriers, while the abnormal tumour neovascularisation induces a specific accumulation of heavy weighted PS carriers by enhanced permeability and retention (EPR) effect. in addition, polymeric prodrug delivery platforms triggered by the acidic nature of the tumour environment or the expression of proteases can be designed. Promising results obtained with recent systemic carrier platforms will, in due course, be translated into the clinic for highly efficient and selective PDT protocols.
Resumo:
A contact lens is a medical device widely used as an alternative to spectacles in order to correct refractive vision problems. The evolution of polymeric biomaterials has heralded a continuous development in the materials used to produce contact lenses and maximize patient comfort and limit adverse events. Microbial keratitis (MK) is a relatively rare but potentially devastating condition associated with contact lens use, particularly with the extended wear of hydrogel lenses. It is the principal complication related to contact lens wear and the large population at risk make it a public health concern. Bacterial binding to the contact lens material is a precursor to the development of MK and is influenced by properties of the material and the bacteria. In order for bacteria to infiltrate the cornea there must be some degree of corneal damage, usually caused by trauma or hypoxia. The most recent materials available aim to allow the continuous wear of lenses while limiting corneal hypoxia, thus helping to prevent the development of MK. Limitations to the treatment of MK require that novel approaches may be necessary in order to limit bacterial adhesion to contact lens materials.
Resumo:
The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N], was used to dissolve metal oxides and hydroxides. The crystal structures of the resulting metal betaine bistriflimide complexes exhibit a rich structural variety. A trimeric structure was found for the cobalt(II) compound, [Co-3(bet)(8)(Hbet)(2)(H2O)(2)][Tf2N](9)[Hbet], a tetrameric structure for the manganese(II) and zinc(II) compound, [Mn-4(bet)(10)(H2O)(4)][Tf2N](8) and [Zn-4(bet)(10)(H2O)(2)][Tf2N](8), respectively, a pentameric structure for the nickel(II) compound, [Ni-5(bet)(12)(H2O)(6)][Tf2N](10), an oxo-hydroxo-cluster formation for the lead(II) compound, [(Pb4O)Pb(OH)(bet)(8)(Tf2N)3] [Tf2N](4)center dot MeOH, and a polymeric structure for the silver(I) compound, [Ag-2(bet)(2)(Tf2N)Ag-2(bet)(2)][Tf2N](3). The zwitterionic nature of the betaine ligand and the weakly coordinating ability of the bis(trifluoromethylsulfonyl)imide [Tf2N]- anion facilitates the incorporation of metal ions into oligonuclear and polynuclear metal complexes.
Resumo:
[AuAg3(C6F5)(CF3CO2)(3)(CH2PPh3)](n) (2) was prepared by reaction of [Au(C6F5)(CH2PPh3)] (1) and [Ag(CF3CO2)] (1:3). The crystal structures of complexes I and 2 were determined by X-ray diffraction, and the latter shows a polymeric 2D arrangement built by Au - Ag, Ag - Ag, and Ag - O contacts. The metallophilic interactions observed in 2 in the solid state seem to be preserved in concentrated THF solutions, as suggested by EXAFS, pulsed-gradient spin-echo NMR, and photophysical studies, which showed that the structural motif [AuAg3(C6F5)(CF3CO2)(3)(CH2PPh3)] is maintained under such conditions. Time-dependent DFT calculations agree with the experimental photophysical energies and suggest a metal-to-ligand charge-transfer phosphorescence process. Ab initio calculations give an estimated interaction energy of around 60 kJ mol(-1) for each Au - Ag interaction.
Resumo:
Anthracene-based, H+-driven, ‘off–on–off’ fluorescent PET (photoinduced electron transfer) switches are immobilized on organic and inorganic polymeric solids in the form of Tentagel® and silica, respectively. The environment of the organic bead displaces apparent switching thresholds towards lower pH values whereas the Si–O- groups of silica electrostatically cause the opposite effect. These switches are ternary logic gate tags, one of which can be particularly useful in strengthening molecular computational identification (MCID) of small solid objects.
Resumo:
Colourless single crystals of [Hg-2(Pym)](NO3)(2), [Hg-2(Pym)](ClO4)(2) and [Hg-2(Pyp)(2)](ClO4)(2) were obtained from aqueous solutions of the respective components Hg-2(NO3)(2).2H(2)O, Hg-2(ClO4)(2).6H(2)O, pyrimidine (Pym) and pyrazine (Pyp). The crystal structures were determined from single-crystal X-ray diffractometer data. [Hg-2(Pym)](NO3)(2): monoclinic, C2/c, Z = 8, a = 1607.4(2), b = 652.79(7), c = 2000.5(2) pm, beta = 103.42(2)degrees, R-all = 0.0530; [Hg-2(Pym)](ClO4)(2): orthorhombic, Pnma, Z = 4, a = 1182.7(2), b = 1662.5(2), c = 607.9(1) pm, R-all = 0.0438; [Hg-2(Pyp)(2)](ClO4)(2): orthorhombic, Aba2, Z = 4, a = 1529.39(9), b = 1047.10(14), c = 1133.49(15) pm, R-all = 0.0381. The crystal structures of [Hg-2(Pym)](NO3)(2) and [Hg-2(Pym)](ClO4)(2) contain polymeric cationic chains [Hg-2(Pym)](+) that are arranged to corrugated layers between which the anions are situated. [Hg-2(Pyp)(2)](ClO4)(2) consists of polymeric cationic layers that are built from (Hg-2)(2)(Hg-2)(2/2)(Pyp)(4) rings connected to each other; the perchlorate tetrahedra are located between these layers.
Resumo:
Uranium(VI) oxide has been dissolved in three different ionic liquids functionalized with a carboxyl group: betainium bis[trifluoromethyl)sulfonyl]imide, 1-(carboxymethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and N-(carboxymethyl)-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide. The dissolution process results in the formation of uranyl complexes with zwitterionic carboxylate ligands and bis[trifluoromethyl)sulfonyl]imide (bistriflimide) counterions. An X-ray diffraction study on single crystals of the uranyl complexes revealed that the crystal structure strongly depends on the cationic core appended to the carboxylate groups. The betainium ionic liquid gives a dimeric uranyl complex, the imidazolium ionic liquid a monomeric complex, and the pyrrolidinium ionic liquid a one-dimensional polymeric uranyl complex, Extended X-ray absorption fine structure measurements have been performed on the betainium uranyl complex. The absorption and luminescence spectra of the uranyl betainium complex have been studied in the solid state and dissolved in water, in acetonitrile, and in the ionic liquid betainium bistriflimide. The carboxylate groups remain coordinated to uranyl in acetonitrile and in betainium bistriflimide but not in water.
Resumo:
The aim of this study was to investigate the solubility of mefenamic acid (MA), a highly cohesive, poorly water-soluble drug in a copolymer of polyoxyethylene–polyoxypropylene (Lutrol F681), and to understand the effect drug polymer solubility has on in vitro dissolution of MA. Solid dispersions (SD) of MA were prepared by a hot melt method, using Lutrol F681 as a thermoplastic polymeric platform. High-speed differential scanning calorimetry (Hyper-DSC), Raman spectroscopy, powder X-ray diffractometry (PXRD) and hot-stage/?uorescence microscopy were used to assess the solubility of the drug in molten and solid polymer. Drug dissolution studies were subsequently conducted on single-phase solid solutions and biphasic SD using phosphate buffer pH 6.8 as dissolution media. Solubility investigations using Hyper-DSC, Raman spectroscopy and hot-stage microscopy suggested MA was soluble in molten Lutrol F681 up to a concentration of 35% (w/w). Conversely, the solubility in the solidstate matrix was limited to<15% (w/w); determined by Raman spectroscopy, PXRD and ?uorescence microscopy. As expected the dissolution properties of MA were signi?cantly in?uenced by the solubility of the drug in the polymer matrix. At a concentration of 10% (w/w) MA (a single phase solid solution) dissolution of MA in phosphate buffer 6.8 was rapid, whereas at a concentration of 50% (w/w) MA (biphasic SD) dissolution was signi?cantly slower. This study has clearly demonstrated the complexity of drug– polymer binary blends and in particular de?ning the solubility of a drug within a polymeric platform. Moreover, this investigation has demonstrated the signi?cant effect drug solubility within a polymeric matrix has upon the in vitro dissolution properties of solid polymer/drug binary blends.
Resumo:
This study reports the formulation/characterisation of novel polymeric platforms designed to behave as low-viscosity systems in the nonaqueous state, however, following uptake of aqueous ?uids, exhibit rheological structuring and mucoadhesion. The rheological/mechanical and mucoadhesive properties of platforms containing poly(acrylic acid) (PAA, 1%, 3%, 5%, w/w) and poloxamines (Tetronic 904, 901, 704, 701, 304), both in the absence and presence of phosphate buffered saline (PBS, pH 7.4) are described. With the exception of Tetronic 904, all formulations exhibited Newtonian ?ow in the nonaqueous state, whereas, all aqueous formulations displayed pseudoplastic ?ow. The consistency and viscoelastic properties were dependent on the concentrations of PAA and PBS and Tetronic grade. PBS signi?cantly increased the consistency, viscoelasticity and mucoadhesion, reaching a maximum at a de?ned concentration of PBS that was dependent on PAA concentration and Tetronic grade. Formulations containing Tetronic 904 exhibited greatest consistency and elasticity both prior to and after dilution with PBS. Increasing PAA concentration enhanced the mucoadhesive properties. Prolonged drug release of metronidazole was observed from formulations containing 10% (w/w) PBS, 3% and, particularly, 5% (w/w) PAA. It is suggested that the physicochemical properties of formulations containing 3% or 5% (w/w) PAA and Tetronic 904, would render them suitable platforms for administration to body cavities.
Resumo:
The strategic incorporation of bioresorbable polymeric additives to calcium-deficient hydroxyapatite cement may provide short-term structural reinforcement and modify the modulus to closer match bone. The longer-term resorption properties may also be improved, creating pathways for bone in-growth. The aim of this study was to investigate the resorption process of a calcium phosphate cement system containing either in polyglycolic acid tri-methylene carbonate particles or polyglycolic acid fibres. This was achieved by in vitro aging in physiological conditions (phosphate buffered solution at 37°C) over 12 weeks. The unreinforced CPC exhibited an increase in compressive strength at 12 weeks, however catastrophic failure was observed above a critical loading. The fracture behaviour of cement was improved by the incorporation of PGA fibres; the cement retained its cohesive structure after critical loading. Gravimetric analysis and scanning electron microscopy showed a large proportion of the fibres had resorbed after 12 weeks allowing for the increased cement porosity, which could facilitate cell infiltration and faster integration of natural bone. Incorporating the particulate additives in the cement did not provide any mechanism for mechanical property augmentation or did not demonstrate any appreciable level of resorption after 12 weeks.