986 resultados para Polymer-solutions
Resumo:
Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.
Resumo:
beta-Casein and alpha-casein showed radical-scavenging activities in aqueous solution, whereas bovine serum albumin (BSA), alpha-lactalbumin and P-lactoglobulin showed much weaker antioxidant activity, when assessed by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging assay. However, beta-casein and alpha-casein showed reduced antioxidant activity after storage at 30 degrees C. An increase in radical- scavenging activity and a fall in fluorescence of the protein component were evident after 6 h, when BSA, beta-lactoglobulin or casein were mixed with EGCG, and excess EGCG was removed, indicating the formation of a complex with this protein on mixing. Storage of all the proteins with EGCG at 30 degrees C caused an increase in the antioxidant activity of the isolated protein component after separation from excess EGCG. This showed that EGCG was reacting with the proteins and that the protein-bound catechin had antioxidant properties. The reaction of EGCG with BSA, casein and beta-lactoglobulin was confirmed by the loss of fluorescence of the protein on storage, and the increase in UV absorbance between 250 and 400 nm. The increase in antioxidant activity of BSA after storage with EGCG was confirmed by the ferric reducing antioxidant potential (FRAP) and the oxygen radical antioxidant capacity (ORAC) assays. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The polymeric films have been prepared based on blends of chitosan with two cellulose ethers-hydroxypropylmethylcellulose and methylcellulose by casting from acetic acid solutions. The films were transparent and brittle in a dry state but an immersion of the samples in deionized water for over 24 h leads to their disintegration or partial dissolution. The miscibility of the polymers in the blends has been assessed by infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis. It was shown that although weak hydrogen bonding exists between the polymer functional groups the blends are not fully miscible in a dry state. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Water-soluble cationic copolymers and hydrogels were synthesized by radical copolymerization of [2-(methacryloyloxy)ethyl]trimetilylammonium chloride (MADQUAT) and 2-hydroxyethylacrylate (HEA). The kinetics of copolymerization has been studied and the reactivity ratios were determined. It was found that MADQUAT exhibits higher reactivity in copolymerization. The complexation between linear MADQUAT-HEA and linear poly(acrylic acid) (PAA) has been studied in aqueous solutions at different pH. It results in the formation of insoluble polyelectrolyte complexes, whose composition and stability to aggregate depends on MADQUAT content in copolymers and pH. The hydrogels were synthesized by three-dimensional radical copolymerization of MADQUAT and HEA in the presence of a crosslinker. The effects of the feed mixture composition on yield and swelling properties of the hydrogels were studied. The interactions of these hydrogels with linear PAA result in formation of gel-polyelectrolyte complexes and contraction of the samples. It was found that the contraction depends on copolymer composition, PAA molecular weight, and solution pH. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The effect of pH on the complexation of poly(acrylic acid) with poly(vinyl alcohol) in aqueous solution, the miscibility of these polymers in the solid state and the possibility for crosslinking the blends using gamma radiation has been studied. It is demonstrated that the complexation ability of poly(vinyl alcohol) with respect to poly(acrylic acid) is relatively low in comparison with some other synthetic non-ionic polymers. The precipitation of interpolymer complexes was observed below the critical pH of complexation (pH(crit1)), which characterizes the transition between a compact hydrophobic polycomplex and an extended hydrophilic interpolymer associate. Films prepared by casting from aqueous solutions at different pH values exhibited a transition from miscibility to immiscibility at a certain critical pH, pH(crit2), above which hydrogen bonding is prevented. It is shown here that gamma radiation crosslinking of solid blends is efficient and only results in the formation of hydrogel films for blends prepared between pH(crit1), and pH(crit2). The yield of the gel fraction and the swelling properties of the films depended on the absorbed radiation dose and the polymer ratio.
Resumo:
Novel water-soluble amphiphilic copolymers have been synthesized by free radical copolymerization of 2-hydroxyethylacrylate with vinyl butyl ether. In water these copolymers exhibit lower critical solution temperature, which depends on the content of hydrophobic vinyl butyl ether units. The interaction between these copolymers and poly(acrylic acid) or poly(methacrylic acid) in aqueous solutions results in formation of interpolymer complexes stabilized by hydrogen bonds and hydrophobic interactions. An increase in hydrophobicity of the copolymers leads to the enhancement of their complex formation ability with respect to poly(acrylic acid) and poly(methacrylic acid). Poly(methacrylic acid) forms stronger complexes with the copolymers when compared with poly(acrylic acid). The complexes exhibit dual sensitivity to pH- and temperature and this property may be easily adjusted regulating the strength of interaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Polymer conjugates are nano-sized, multicomponent constructs already in the clinic as anticancer compounds, both as single agents or as elements of combinations. They have the potential to improve pharmacological therapy of a variety of solid tumors. Polymer-drug conjugation promotes passive tumor targeting by the enhanced permeability and retention (EPR) effect and allows for lysosomotropic drug delivery following endocytic capture. In the first part of this review, we analyze the promising results arising from clinical trials of polymer-bound chemotherapy. The experience gained on these studies provides the basis for the development of a more sophisticated second-generation of polymer conjugates. However, many challenges still lay ahead providing scope to develop and refine this field. The "technology platform'' of polymer therapeutics allows the development of both new and exciting polymeric materials, the incorporation of novel bioactive agents and combinations thereof to address recent advances in drug therapy. The rational design of polymer drug conjugates is expected to realize the true potential of these "nanomedicines".
Resumo:
Mixing of aqueous solutions of poly(acrylic acid) and (hydroxypropyl) cellulose results in formation of hydrogen-bonded interpolymer complexes, which precipitate and do not allow preparation of homogeneous polymeric films by casting. In the present work the effect of pH on the complexation between poly(acrylic acid) and (hydroxypropyl)cellulose in solutions and miscibility of these polymers in solid state has been studied. The pH-induced complexation-miscibility-immiscibility transitions in the polymer mixtures have been observed. The optimal conditions for preparation of homogeneous polymeric films based on blends of these polymers have been found, and the possibility of radiation cross-linking of these materials has been demonstrated. Although the gamma-radiation treatment of solid polymeric blends was found to be inefficient, successful cross-linking was achieved by addition of N, N'- methylenebis(acrylamide). The mucoadhesive potential of both soluble and cross-linked films toward porcine buccal mucosa is evaluated. Soluble films adhered to mucosal tissues undergo dissolution within 30-110 min depending on the polymer ratio in the blend. Cross-linked films are retained on the mucosal surface for 10-40 min and then detach.
Resumo:
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E-3, the spheres S-3 and the hyperboloids H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.
Resumo:
A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.
Resumo:
A one-dimensional shock (bore) reflection problem is discussed for the two-dimensional shallow water equations with cylindrical symmetry. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankine-Hugoniot shock relations.
Resumo:
Solutions of a two-dimensional dam break problem are presented for two tailwater/reservoir height ratios. The numerical scheme used is an extension of one previously given by the author [J. Hyd. Res. 26(3), 293–306 (1988)], and is based on numerical characteristic decomposition. Thus approximate solutions are obtained via linearised problems, and the method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations.