924 resultados para Polyhedral Domain
Resumo:
The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.
Resumo:
The satellite tobacco necrosis virus RNA is uncapped and requires a 3′ translational enhancer domain (TED) for translation. Both in the wheat germ extract and in tobacco, TED stimulates in cis translation of heterologous, uncapped RNAs. In this study we investigated to what extent translation stimulation by TED depends on binding to wheat germ factors. We show that in vitro TED binds at least seven wheat germ proteins. Translation and crosslinking assays, to which TED or TED derivatives with reduced functionality were included as competitor, showed that TED function correlates with binding to a 28 kDa protein (p28). One particular condition of competition revealed that p28 binding is not obligatory for TED function. Under this condition, a 30 kDa protein (p30) binds to TED. Importantly, affinity of p30 correlates with functionality of TED. These results strongly suggest that TED has the capacity to stimulate translation by recruiting the translational machinery either via binding to p28 or via binding to p30.
Resumo:
In order to support the structural genomic initiatives, both by rapidly classifying newly determined structures and by suggesting suitable targets for structure determination, we have recently developed several new protocols for classifying structures in the CATH domain database (http://www.biochem.ucl.ac.uk/bsm/cath). These aim to increase the speed of classification of new structures using fast algorithms for structure comparison (GRATH) and to improve the sensitivity in recognising distant structural relatives by incorporating sequence information from relatives in the genomes (DomainFinder). In order to ensure the integrity of the database given the expected increase in data, the CATH Protein Family Database (CATH-PFDB), which currently includes 25 320 structural domains and a further 160 000 sequence relatives has now been installed in a relational ORACLE database. This was essential for developing more rigorous validation procedures and for allowing efficient querying of the database, particularly for genome analysis. The associated Dictionary of Homologous Superfamilies [Bray,J.E., Todd,A.E., Pearl,F.M.G., Thornton,J.M. and Orengo,C.A. (2000) Protein Eng., 13, 153–165], which provides multiple structural alignments and functional information to assist in assigning new relatives, has also been expanded recently and now includes information for 903 homologous superfamilies. In order to improve coverage of known structures, preliminary classification levels are now provided for new structures at interim stages in the classification protocol. Since a large proportion of new structures can be rapidly classified using profile-based sequence analysis [e.g. PSI-BLAST: Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997) Nucleic Acids Res., 25, 3389–3402], this provides preliminary classification for easily recognisable homologues, which in the latest release of CATH (version 1.7) represented nearly three-quarters of the non-identical structures.
Resumo:
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families.
Resumo:
SBASE 8.0 is the eighth release of the SBASE library of protein domain sequences that contains 294 898 annotated structural, functional, ligand-binding and topogenic segments of proteins, cross-referenced to most major sequence databases and sequence pattern collections. The entries are clustered into over 2005 statistically validated domain groups (SBASE-A) and 595 non-validated groups (SBASE-B), provided with several WWW-based search and browsing facilities for online use. A domain-search facility was developed, based on non-parametric pattern recognition methods, including artificial neural networks. SBASE 8.0 is freely available by anonymous ‘ftp’ file transfer from ftp.icgeb.trieste.it. Automated searching of SBASE can be carried out with the WWW servers http://www.icgeb.trieste.it/sbase/ and http://sbase.abc.hu/sbase/.
Resumo:
The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.
Resumo:
We introduced disulfide bonds to lock the integrin αLβ2 I domain in predicted open, ligand binding or closed, nonbinding conformations. Transfectants expressing αLβ2 heterodimers containing locked-open but not locked-closed or wild-type I domains constitutively adhered to intercellular adhesion molecule-1 (ICAM-1) substrates. Locking the I domain closed abolished constitutive and activatable adhesion. The isolated locked-open I domain bound as well as the activated αLβ2 heterodimer, and binding was abolished by reduction of the disulfide. Lovastatin, which binds under the conformationally mobile C-terminal α-helix of the I domain, inhibited binding to ICAM-1 by αLβ2 with wild-type, but not locked-open I domains. These data establish the importance of conformational change in the αL I domain for adhesive function and show that this domain is sufficient for full adhesive activity.
Resumo:
We used integrin αLβ2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the αL I domain and β2 I-like domain inhibit adhesion of wild-type αLβ2 to intercellular adhesion molecule-1. However, with αLβ2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, αLβ2 containing a locked open I domain was completely resistant to inhibition by mAbs to the β2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type αLβ2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn2+, as measured with mAb m24, which we map here to the β2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn2+-induced exposure of the KIM127 epitope in the β2 stalk region. Furthermore, locked open I domains, in αLβ2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg2+ and Mn2+. These results suggest that Mn2+ activates αLβ2 by binding to a site other than the I domain, most likely the I-like domain of β2.
Resumo:
The K homology (KH) module is a widespread RNA-binding motif that has been detected by sequence similarity searches in such proteins as heterogeneous nuclear ribonucleoprotein K (hnRNP K) and ribosomal protein S3. Analysis of spatial structures of KH domains in hnRNP K and S3 reveals that they are topologically dissimilar and thus belong to different protein folds. Thus KH motif proteins provide a rare example of protein domains that share significant sequence similarity in the motif regions but possess globally distinct structures. The two distinct topologies might have arisen from an ancestral KH motif protein by N- and C-terminal extensions, or one of the existing topologies may have evolved from the other by extension, displacement and deletion. C-terminal extension (deletion) requires β-sheet rearrangement through the insertion (removal) of a β-strand in a manner similar to that observed in serine protease inhibitors serpins. Current analysis offers a new look on how proteins can change fold in the course of evolution.
Resumo:
p300 and CBP participate as transcriptional coregulators in the execution of a wide spectrum of cellular gene expression programs controlling cell differentiation, growth and homeostasis. Both proteins act together with sequence-specific transcription factors to modify chromatin structure of target genes via their intrinsic acetyltransferase activity directed towards core histones and some transcription factors. So far, p300-related proteins have been described in animals ranging from Drosophila and Caenorhabditis elegans to humans. In this report, we describe p300/CBP-like polypeptides in the plant Arabidopsis thaliana. Interestingly, homology between animal and plant p300/CBP is largely restricted to a C-terminal segment, about 600 amino acids in length, which encompasses acetyltransferase and E1A-binding domains. We have examined whether this conservation in sequence is paralleled by a conservation in function. The same amino acid residues critical for acetyltransferase activity in human p300 are also critical for the function of one of the plant orthologs. Remarkably, plant proteins bind to the adenovirus E1A protein in a manner recapitulating the binding specificity of mammalian p300/CBP. The striking conservation of an extended segment of p300/CBP suggests that it may constitute a functional entity fulfilling functions that may be essential for all metazoan organisms.
Resumo:
Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits reversible photochemistry in vitro when expressed separately or in tandem. We have determined the crystal structure of the LOV2 domain from the phototropin segment of the chimeric fern photoreceptor phy3 to 2.7-Å resolution. The structure constitutes an FMN-binding fold that reveals how the flavin cofactor is embedded in the protein. The single LOV2 cysteine residue is located 4.2 Å from flavin atom C(4a), consistent with a model in which absorption of blue light induces formation of a covalent cysteinyl-C(4a) adduct. Residues that interact with FMN in the phototropin segment of the chimeric fern photoreceptor (phy3) LOV2 are conserved in LOV domains from phototropin of other plant species and from three proteins involved in the regulation of circadian rhythms in Arabidopsis and Neurospora. This conservation suggests that these domains exhibit the same overall fold and share a common mechanism for flavin binding and light-induced signaling.
Resumo:
The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-Å resolution. The α/β structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3γ (HNF-3γ), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3γ and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the β subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.
Resumo:
The NMR structure of the rat calreticulin P-domain, comprising residues 189–288, CRT(189–288), shows a hairpin fold that involves the entire polypeptide chain, has the two chain ends in close spatial proximity, and does not fold back on itself. This globally extended structure is stabilized by three antiparallel β-sheets, with the β-strands comprising the residues 189–192 and 276–279, 206–209 and 262–265, and 223–226 and 248–251, respectively. The hairpin loop of residues 227–247 and the two connecting regions between the β-sheets contain a hydrophobic cluster, where each of the three clusters includes two highly conserved tryptophyl residues, one from each strand of the hairpin. The three β-sheets and the three hydrophobic clusters form a repeating pattern of interactions across the hairpin that reflects the periodicity of the amino acid sequence, which consists of three 17-residue repeats followed by three 14-residue repeats. Within the global hairpin fold there are two well-ordered subdomains comprising the residues 219–258, and 189–209 and 262–284, respectively. These are separated by a poorly ordered linker region, so that the relative orientation of the two subdomains cannot be precisely described. The structure type observed for CRT(189–288) provides an additional basis for functional studies of the abundant endoplasmic reticulum chaperone calreticulin.
Resumo:
Mammalian homologues of Drosophila Trp form plasma membrane channels that mediate Ca2+ influx in response to activation of phospholipase C and internal Ca2+ store depletion. Previous studies showed that human Trp3 is activated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and identified interacting domains, one on Trp and two on IP3R. We now find that Trp3 binds Ca2+-calmodulin (Ca2+/CaM) at a site that overlaps with the IP3R binding domain. Using patch-clamp recordings from inside-out patches, we further show that Trp3 has a high intrinsic activity that is suppressed by Ca2+/CaM under resting conditions, and that Trp3 is activated by the following: a Trp-binding peptide from IP3R that displaces CaM from Trp3, a myosin light chain kinase Ca2+/CaM binding peptide that prevents CaM from binding to Trp3, and calmidazolium, an inactivator of Ca2+/CaM. We conclude that inhibition of the inhibitory action of CaM is a key step of Trp3 channel activation by IP3Rs.
Resumo:
We describe the construction of a soluble protein carrying the N-terminal extracellular domain (ECD) of the α7 subunit of the nicotinic acetylcholine receptor. The approach was to fuse the α7 ECD at the C and N termini of several monomeric and pentameric soluble carrier proteins and to investigate the soluble expression of the product in Escherichia coli. An initial screening of six carrier proteins resulted in the selection of a fusion protein comprising, from the N to the C terminus, the maltose binding protein, a 17-aa linker containing an enterokinase binding site, and the α7 ECD. This protein is soluble upon expression in bacteria and is purified by affinity chromatography. It binds the competitive nicotinic antagonist α-bungarotoxin with 2.5 μM affinity and displays a CD spectrum corresponding to a folded protein. The method might be suitable to produce large quantities of protein for crystallization and immunochemical experiments.