968 resultados para Plant pathogen defense
Resumo:
NOD2 functions as an intracellular sensor for microbial pathogen and plays an important role in epithelial defense. The loss-of-function mutation of NOD2 is strongly associated with human Crohn's disease (CD). However, the mechanisms of how NOD2 maintains the intestinal homeostasis and regulates the susceptibility of CD are still unclear. Here we found that the numbers of intestinal intraepithelial lymphocytes (IELs) were reduced significantly in Nod2(-/-) mice and the residual IELs displayed reduced proliferation and increased apoptosis. Further study showed that NOD2 signaling maintained IELs via recognition of gut microbiota and IL-15 production. Notably, recovery of IELs by adoptive transfer could reduce the susceptibility of Nod2(-/-) mice to the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Our results demonstrate that recognition of gut microbiota by NOD2 is important to maintain the homeostasis of IELs and provide a clue that may link NOD2 variation to the impaired innate immunity and higher susceptibility in CD.
Resumo:
In higher plants, roots acquire water and soil nutrients and transport them upward to their aerial parts. These functions are closely related to their anatomical structure; water and nutrients entering the root first move radially through several concentric layers of the epidermis, cortex, and endodermis before entering the central cylinder. The endodermis is the innermost cortical cell layer that features rings of hydrophobic cell wall material called the Casparian strips, which functionally resemble tight junctions in animal epithelia. Nutrient uptake from the soil can occur through three different routes that can be interconnected in various ways: the apoplastic route (through the cell wall), the symplastic route (through cellular connections), and a coupled trans-cellular route (involving polarized influx and efflux carriers). This Update presents recent advances in the radial transport of nutrients highlighting the coupled trans-cellular pathway and the roles played by the endodermis as a barrier.
Resumo:
The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts.
Resumo:
Résumé de la thèseBien que le mutualisme puisse être considéré comme une relation harmonieuse entre différentes espèces, son étude révèle plutôt une exploitation réciproque où chaque partenaire tente de maximiser ses bénéfices tout en réduisant ses coûts. Dans ce contexte, l'identification des facteurs qui favorisent ou contrarient, au cours de l'évolution, une issue mutualiste est une étape majeure pour pouvoir reconstruire les étapes clés menant à l'apparition et au maintien des interactions mutualistes. Le but de ce doctorat était l'identification des traits phénotypiques qui permettent à la plante Silene latofolia (Caryophyllacée)et à son pollinisateur - prédateur de graines, la phalène Hadena bicruris (Noctuidé), d'augmenter les bénéfices nets que chacun retire de l'interaction. Ce système d'étude est particulièrement bien approprié à l'étude de ces traits, car on peut assez facilement estimer la qualité et la quantité des descendants (fitness) des deux partenaires. En effet, la femelle papillon pond un oeuf dans la fleur qu'elle pollinise et sa larve se développe dans le fruit, consommant les graines de la plante. Ainsi, sur une même plante, il est possible d'estimer les succès respectifs de la plante et du papillon à obtenir une descendance. De plus, le conflit d'intérêt autour des graines qui sont indispensables, à la fois à la plante et au papillon, peut stimuler l'évolution de traits qui limitent la surexploitation réciproque des partenaires. Dans une première étude, j'ai montré que le papillon mâle était un pollinisateur efficace de S. latifolia et qu'ainsi, il permettait à la plante d'augmenter le nombre de graines produites (i.e.bénéfice) sans pour autant augmenter la quantité de larves sur la plante. Dans ce système, les papillons pondent un seul oeuf par fleur, déposé soit à l'intérieur de la fleur, dans le tube de corolle, soit sur le pétale. Ma seconde étude montre que les plantes répondent différemment à la présence des oeufs suivant leur position. Aussi, quand l'oeuf est placé dans la fleur, la plante a davantage tendance à ne pas développer le fruit de la fleur infesté ou bien à produire des fruits plus petits que lorsque l'oeuf est placé sur le pétale. Enfin, j'ai montré que la femelle du papillon pond plus souvent sur le pétale lorsque elle visite des fleurs dotées d'un long tube de corolle, et que les larves issues de ces oeufs ont moins de chances de réussir à pénétrer dans le fruit que les larves issues des oeufs placés à l'intérieur de la fleur. Aussi, la variation observée du site de ponte pourrait être causé par la morphologie de la fleur qui contraint le papillon à pondre sur le pétale. Vu dans leur ensemble, les résultats obtenus pendant ce doctorat suggèrent que la participation des mâles à la pollination, l'absence de développement des fruits et la profondeur du tube de corolle pourraient réduire les coûts que S. latifolia subit dans son interaction avec H. bicruris. Par ailleurs, je n'ai pas détecté de mécanismes qui permettraient au papillon de réduire les coûts que la plante pourrait lui imposer. La prochaine étape serait de déterminer l'effet des traits identifiés dans ce doctorat sur la fitness globale de la plante et du papillon pour estimer pleinement leur efficacité à réduire les coûts et à favoriser une issue mutualiste. De même, il faudrait évaluer l'effet de ces traits en populations naturelles pour identifier le rôle des facteurs environnementaux sur leur efficacité.AbstractAlthough mutualisms can be regarded as harmonious relationships between the interacting partners, they are best conceptualized as reciprocal exploitations in which each partner attempts to increase its own benefits and decrease its costs. To date, identifying the factors which promote or discourage mutualistic outcomes remains a major goal to reconstruct the ecological conditions leading to mutualisms. The aim of this PhD thesis was to identify phenotypic traits that may increase the net benefits of each partner in the interaction between the plant Silene latifolia (Caryophyllaceae) and its pollinator / seed predator, the moth Hadena bicruris (Noctuidae). This study system is particularly well suited because the fitness of both interacting species can be assessed. The female moth lays its egg in the flower it pollinated, and its offspring grows in the fruit, feeding on the seeds of the plant, which allows for the follow-up of both larva and fruit fates. Furthermore, the inherent conflict of interest over the seeds as plant progeny vs. larval resource may stimulate the evolution of traits that reduce overexploitation in both the moth and plant. In a first study, I show that male moths are efficient pollinators, hence increasing seed production without increasing oviposition. The contribution of male moths to pollination might thus improve the net benefits of the interaction for the host plant. Females of the H. bicruris moth lay a single egg per flower, and place it either inside the corolla tube or on the petal. My second study shows that plants are more likely to abort the infested flower or to produce a smaller fruit when the egg was experimentally placed inside the flower compared to plants that received an egg on the petal. Finally, female moths were found to lay their eggs more frequently on the petal when visiting a flower with a deep corolla tube, and larvae hatching from these eggs less likely to successfully attack the fruit. Variation in egg position on the flower may thus be the result of a constraint imposed by floral morphology. Overall, this PhD work suggests that the pollination by male moths, flower abortion, and deep corolla tube may efficiently reduce the costs experienced by S. latifolia in its interaction with H. bicruris. Interestingly, no apparent mechanism of costs reduction was detected for the moth. Further studies should focus on the effects of these traits (i) in the long term fitness of both the plant and the insect and (ii) their interactions with environmental factors (biotic and abiotic) that may affect their efficiency in natural populations.
Resumo:
Pathogen inactivation of blood products represents a global and major paradigm shift in transfusion medicine. In the next near future, it is likely that most blood products will be inactivated by various physicochemical approaches. The concept of blood safety will be challenged as well as transfusion medicine practice, notably for donor selection or biological qualification. In this context, it seems mandatory to develop analytical economic approaches by assessing costs-benefits ratio of blood transfusion as well as to set up cohorts of patients based on hemovigilance networks allowing rigorous scientific analysis of the benefits and the risks of blood transfusion at short- and long-term.
Resumo:
Short-term dynamic psychotherapy (STDP) has rarely been investigated with regard to its underlying mechanisms of change, even if psychoanalytic theory informs us about several potential putative mechanisms of change in patients. Change in overall defensive functioning is one. In this study, we explored the role of overall defensive functioning, by comparing it on the process level with the neighbouring concept of overall coping functioning. A total of N=32 patients, mainly presenting adjustment disorder, were included in the study. The patients underwent STDP up to 40 sessions; three sessions per psychotherapy were transcribed and analyzed by using two observer-rating scales: Defense Mechanism Rating Scales (Perry, 1990) and Coping Action Patterns (Perry, Drapeau, Dunkley, & Blake, 2005). Hierarchical linear modeling was applied to model the change over the course of therapy and relate it to outcome. Results suggest that STDP has an effect on the target variable of overall defensive functioning, which was absent for overall coping functioning. Links with outcome confirm the importance of the effect. These results are discussed from methodological and clinical viewpoints.
Resumo:
State Agency Audit Report
Resumo:
The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge in vivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge.
Resumo:
Wounding initiates a strong and largely jasmonate-dependent remodelling of the transcriptome in the leaf blades of Arabidopsis (Arabidopsis thaliana). How much control do jasmonates exert on wound-induced protein repatterning in leaves? Replicated shotgun proteomic analyses of 2.5-mm-wide leaf strips adjacent to wounds revealed 106 differentially regulated proteins. Many of these gene products have not emerged as being wound regulated in transcriptomic studies. From experiments using the jasmonic acid (JA)-deficient allene oxide synthase mutant we estimated that approximately 95% of wound-stimulated changes in protein levels were deregulated in the absence of JA. The levels of two tonoplast proteins already implicated in defense response regulation, TWO-PORE CHANNEL1 and the calcium-V-ATPase ACA4 increased on wounding, but their transcripts were not wound inducible. The data suggest new roles for jasmonate in controlling the levels of calcium-regulated pumps and transporters, proteins involved in targeted proteolysis, a putative bacterial virulence factor target, a light-dependent catalyst, and a key redox-controlled enzyme in glutathione synthesis. Extending the latter observation we found that wounding increased the proportion of oxidized glutathione in leaves, but only in plants able to synthesize JA. The oxidizing conditions generated through JA signaling near wounds help to define the cellular environment in which proteome remodelling occurs.
Resumo:
Pseudomonas fluorescens EPS62e was selected during a screening procedure for its high efficacy in controlling infections by Erwinia amylovora, the causal agent of fire blight disease, on different plant materials. In field trials carried out in pear trees during bloom, EPS62e colonized flowers until the carrying capacity, providing a moderate efficacy of fire-blight control. The putative mechanisms of EPS62e antagonism against E. amylovora were studied. EPS62e did not produce antimicrobial compounds described in P. fluorescens species and only developed antagonism in King’s B medium, where it produced siderophores. Interaction experiments in culture plate wells including a membrane filter, which physically separated the cultures, confirmed that inhibition of E. amylovora requires cell-to-cell contact. The spectrum of nutrient assimilation indicated that EPS62e used significantly more or different carbon sources than the pathogen. The maximum growth rate and affinity for nutrients in immature fruit extract were higher in EPS62e than in E. amylovora, but the cell yield was similar. The fitness of EPS62e and E. amylovora was studied upon inoculation in immature pear fruit wounds and hypanthia of intact flowers under controlled-environment conditions. When inoculated separately, EPS62e grew faster in flowers, whereas E. amylovora grew faster in fruit wounds because of its rapid spread to adjacent tissues. However, in preventive inoculations of EPS62e, subsequent growth of EPS101 was significantly inhibited. It is concluded that cell-to-cell interference as well as differences in growth potential and the spectrum and efficiency of nutrient use are mechanisms of antagonism of EPS62e against E. amylovora
Resumo:
The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
Resumo:
State Agency Audit Report
Resumo:
Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520-3100 m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g., the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradient.