963 resultados para Plant Development
The non-timber forest products sector in nepal : policy issues in plant conservation and utilization
Resumo:
The non-timber forest products (NTFPs) sector in Nepal is being promoted with the concept of sustainable management as articulated by the Convention on Biological Diversity. To promote and regulate this sector, Nepal adopted the Herbs and NTFP Development Policy in 2004. The goal of this thesis was to assess the effectiveness of this policy along with other forestry and natural resource policies in Nepal concerning the conservation and sustainable use of NTFPs. I conducted open-ended semi-structured interviews with 28 key informants in summer 2006 in Nepal where I also collected relevant documents and publications. I did qualitative analysis of data obtained from interviews and document review. The research found many important issues that need to be addressed to promote the NTFP sector as envisioned by the Government of Nepal. The findings of this research will help to further implement the policy and promote the NTFP sector through sustainable management practices.
Resumo:
As identified by Griffin (1997) and Kahn (2012), manufacturing organisations typically improve their market position by accelerating their product development (PD) cycles. One method for achieving this is to reduce the time taken to design, test and validate new products, so that they can reach the end customer before competition. This paper adds to existing research on PD testing procedures by reporting on an exploratory investigation carried out in a UK-based manufacturing plant. We explore the organisational and managerial factors that contribute to the time spent on testing of new products during development. The investigation consisted of three sections, viz. observations and process modelling, utilisation metrics and a questionnaire-based investigation, from which a proposed framework to improve and reduce the PD time cycle is presented. This research focuses specifically on the improvement of the utilisation of product testing facilities and the links to its main internal stakeholders - PD engineers.
Resumo:
The new engine plant by General Motors (GM) in Joinville-SC, inaugurated on February 27th 2013, incorporates the most advanced automotive technology processes and broad compliance with environmental standards and energy efficiency. The initiatives implemented in this industrial plant include processes with 100% of recycled industrial waste (landfill free) and pioneer systems in energy efficiency and environmental protection, qualifying the plant to obtain the global certification of Leadership in Energy and Environmental Design (LEED). This industrial project reveals the strategic importance of the region and of Brazil in the growth of GM in the world, becoming a reference for studies and project evaluations of "green" factories in the automotive sector. The present study performs an exploratory research based on scientific publications, assessing the direct and indirect impacts on the business outcome, resulting from implementation of industrial serviceoriented sustainability of its operations, referred to in this article as "Green Factory”. We concluded that the adopted technologies focused on sustainability, study and development, represent a new step for the design of new plants and future expansions of the company in the region, combining low operating cost, low environmental impact and conservation of natural resources.
Resumo:
The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.
Resumo:
Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.
Resumo:
Gluten sensitive consumers and people suffering from coeliac disease account for up to 6% of the general population (Catassi et al., 2013). These consumers must avoid foods which contain gluten and related proteins found in wheat, rye or barley. Beer is produced from barley malt and therefore contains hordeins, (gluten like proteins). Beers labelled as gluten-free must contain below 10 mg/kg hordeins (10 mg/kg hordeins = 20 mg/kg gluten under current regulations) to be considered safe for gluten sensitive consumers. Currently there are a limited number of methods available for reducing beer hordeins, the studies outlined in this thesis provide a range of tools for the beverage industry to reduce the hordein content of beer It is well known, that during malting and brewing hordeins are reduced, but they still remain in beer at levels above 10 mg/kg. During malting, hordeins are broken down to form new proteins in the growing plant. Model malting and brewing systems were developed and used to test, how the modification of the malting process could be used to reduce beer hordeins. It was shown, that by using a controlled malting and brewing regime, a range of barley cultivars produced beer with significant differences in levels of hordeins. Beer hordeins ranged from 10 mg/kg to 60 mg/kg. Another study revealed that when malting was prolonged, to maximise breakdown of proteins, beer hordeins can be reduced by up to 44%. The natural breakdown of hordein during malting enhanced in a further study, when a protease was added to support the hordein degradation during steeping and germination. The enzyme addition resulted in a 46% reduction in beer hordeins 2 when compared to the control. All of the malt treatments had little or no impact on malt quality. The hordein levels can also be reduced during the beer stabilisation process. Levels of beer hordein were tested after stabilisation using two different concentrations of silica gel and tannic acid. Silica gel was very effective in reducing beer hordeins, 90% of beer hordeins were removed compared to the control beer. Beer hordeins could be reduced to below 10 mg/kg and the beer qualities such as foam, colour and flavour were not affected. Tannic acid also reduced beer hordein by up to 90%, but it reduced foam stability and affected beer flavours. A further study described treatment of beer with microbial transglutaminase (mTG), to create bonds between hordein proteins, which increased particle size and allowed removal during filtration. The addition of the mTG led to a reduction of the beer hordein by up to 96% in beer, and the impact on the resulting beer quality was minimal. These studies provide the industry with a toolbox of methods leading to the reduction of hordein in the final beer without negatively affecting beer quality.
Resumo:
The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.
Resumo:
In the last decade, research in Computer Vision has developed several algorithms to help botanists and non-experts to classify plants based on images of their leaves. LeafSnap is a mobile application that uses a multiscale curvature model of the leaf margin to classify leaf images into species. It has achieved high levels of accuracy on 184 tree species from Northeast US. We extend the research that led to the development of LeafSnap along two lines. First, LeafSnap’s underlying algorithms are applied to a set of 66 tree species from Costa Rica. Then, texture is used as an additional criterion to measure the level of improvement achieved in the automatic identification of Costa Rica tree species. A 25.6% improvement was achieved for a Costa Rican clean image dataset and 42.5% for a Costa Rican noisy image dataset. In both cases, our results show this increment as statistically significant. Further statistical analysis of visual noise impact, best algorithm combinations per species, and best value of , the minimal cardinality of the set of candidate species that the tested algorithms render as best matches is also presented in this research
Resumo:
Awnless barnyard grass, feathertop Rhodes grass, and windmill grass are important weeds in Australian cotton systems. In October 2014, an experiment was established to investigate the phenological plasticity of these species. Seed of these species were planted in a glasshouse every four weeks and each cohort grown for 6 months. A developmental response to day length was observed in barnyard grass but not in the other species. Days to maturity increased with each planting for feathertop Rhodes and windmill grass for the first six cohorts. Barnyard grass showed a similar pattern in growth for seeds planted from October to December with an increase in the onset of maturity from 51 to 58 days. However, the onset of maturity for cohorts planted between January and March decreased to between 50 and 52 days. All species had a decrease in the total number of panicles produced from the first four plantings. Feathertop Rhodes grass planted in October produced 41 panicles compared to those planted at the end of December producing 30 panicles, barnyard grass had a decrease from 99 to 47 panicles and windmill grass 37 to 15 panicles on average. By comparing the development of these key weed species over 12 months, detailed information on the phenological plasticity of these species will be obtained. This information will contribute to more informed management decisions by improving our understanding of appropriate weed control timings or herbicide rates depending on weed emergence and development.
Resumo:
Postharvest disease management is one of the key challenges in commercial mango supply chains. Comprehensive investigations were made regarding the impact of geographic locality on postharvest disease development and other quality parameters in 'Sindhri' and 'Samar Bahisht (S.B.) Chaunsa' mangoes under ambient (33±1°C; 55-60% RH) and low temperature storage/simulated shipping (12±1°C; 80- 85% RH) conditions (28 or 35 days storage for 'Sindhri' and 21 or 28 days for 'S.B. Chaunsa'). Physiologically mature (days from fruit set were 95-100 and 110-115 for 'Sindhri' and 'S.B Chaunsa', respectively) 'Sindhri' and 'S.B. Chaunsa' fruits were harvested from five geographic localities and subjected to ambient and simulated shipping conditions. Under ambient conditions, no disease incidence was observed till fruit eating stage in 'Sindhri'. However, in 'S.B. Chaunsa', significant variation in different localities was observed with respect to disease incidence. Maximum and at par disease was exhibited by the fruit collected from district Vehari and Khanewal in 'S.B. Chaunsa'. Under simulated shipping conditions, disease development varied significantly with respect to different locations and storage durations. In 'Sindhri', fruit of M. Garh, while, 'S.B. Chaunsa' fruit of districts R.Y. Khan, M. Garh and Khanewal showed higher disease incidence. Fruit peel colour development was significantly reduced as storage days increased. Fruit firmness, skin shriveling, fresh weight loss, dry matter, biochemical and organoleptic attributes also varied significantly among the fruit sourced from different orchards of different localities. Analysis of N contents in leaves and fruit peel revealed that N contents of leaf and peel were positively correlated with disease severity in mango. Botryodiplodia spp., Phomopsis mangiferae, Alternaria alternata, Colletotrichum gloeosporioides were the pathogens isolated from fruits of all locations; however, the prevalence frequency varied with the geographic localities. In conclusion, the production locality, cultivar and nutrition (nitrogen content of fruit peel) had significant effect on fruit quality out-turn at ripe stage in terms of disease development so area specific disease management system needs to be implemented for better quality at retail.
Resumo:
Background: Interspecific hybridization is a useful tool in ornamental breeding to increase genetic variability and introduce new valuable traits into existing cultivars. The successful formation of interspecific hybrids is frequently limited by the presence of pre- and post-fertilization barriers. In the present study, we investigated the nature of hybridization barriers occurring in crosses between Kalanchoe species and evaluated possibilities of obtaining interspecific hybrids. Results: The qualitative and quantitative analyses of pollen tube growth in situ were performed following intra-and interspecific pollinations. They revealed occurrence of pre-fertilization barriers associated with inhibition of pollen germination on the stigma and abnormal growth of pollen tubes. Unilateral incongruity related to differences in pistil length was also observed. The pollen quality was identified as a strong factor influencing the number of pollen tubes germinating in the stigma. In relation to post-fertilization barriers, endosperm degeneration was a probable barrier hampering production of interspecific hybrids. Moreover, our results demonstrate the relation of genetic distance estimated by AFLP marker analysis of hybridization partners with cross-compatibility of Kalanchoe species. At the same time, differences in ploidy did not influence the success of interspecific crosses. Conclusions: Our study presents the first comprehensive analysis of hybridization barriers occurring within Kalanchoe genus. Reproductive barriers were detected on both, pre- and post-fertilization levels. This new knowledge will contribute to further understanding of reproductive isolation of Kalanchoe species and facilitate breeding of new cultivars. For the first time, interspecific hybrids between K. nyikae as maternal plant and K. blossfeldiana as well as K. blossfeldiana and K. marnieriana were generated.
Resumo:
Background: The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. Results: The softening response of pear fruit held for 14days at 20°C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911bp), of which 32.8% were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. Conclusions: We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening. © 2015 Nham et al.
Resumo:
In previous chapters of this volume, various authors describe the development of herbaceous legumes for pastures on clay soils in Queensland until about the 1980s. Emphasis is on the collection and evaluation of the genus Desmanthus, given its relatively recent addition to agriculture and considerable potential for providing useful pasture legumes for clay soils, particularly in the seasonally dry areas of northern Australia. Other genera are also discussed, including early assessments of herbaceous legumes that were later developed for clay soils (Clitoria, Macroptilium and Stylosanthes). This chapter provides a summary of the development of herbaceous legumes for clay soils in Queensland from these earlier assessments until present. Beef cattle farming is the principal agricultural enterprise in seasonally dry areas of northern Australia, including large areas of clay soils in Queensland. Sown and naturally occurring grasses provide the key feed resource, and the inclusion of sown legumes can significantly improve live-weight gain and reproductive performance per unit area. Queensland has been the centre of development for legumes for clay soils in tropical and subtropical areas of Australia, mostly through assessing and developing plants held in the Australian Tropical Forages Genetic Resource Collection (ATFGRC) (now a component of the Australia Pastures Genebank (APG)). The systematic appraisal of genetic material for clay soils was a focus of well-resourced government research up to the early to mid-1990s, but declined thereafter as sown pasture research teams were dismantled and funding to maintain the ATFGRC declined. Cultivar development is now conducted by small government, private enterprise and university research teams that collaborate where possible. In recent studies the use of experienced researcher knowledge and old plant evaluation sites has been particularly valuable for identifying potentially useful material. Cultivars for long- and short-term pastures on clay soils have been developed to the level of commercial seed production for Desmanthus (five cultivars from four species with two cultivars (one composite) in current use), Clitoria ternatea (one cultivar), Macroptilium bracteatum (two) and Stylosanthes seabrana (two). Other potential cultivars of these species are currently in various stages of development. Each species has different production niches depending on climate, clay soil type and grazing strategy. Adoption of these cultivars is occurring but has variously been impeded by limited promotion, mismatch of seed supply and demand, and difficulty establishing legumes in pastures of some key grass species. Recent renewed investment by the Australian Beef Industry has seen revived government research into pasture legumes in Queensland and rejuvenation of the APG.
Resumo:
One of the loci responsible for strong phosphine resistance encodes dihydrolipoamide dehydrogenase (DLD). The strong co-incidence of enzyme complexes that contain DLD, and enzymes that require thiamine as a cofactor, motivated us to test whether the thiamine deficiency of polished white rice could influence the efficacy of phosphine fumigation against insect pests of stored grain. Three strains of Sitophilus oryzae (susceptible, weak and strong resistance) were cultured on white rice (thiamine deficient), brown rice or whole wheat. As thiamine is an essential nutrient, we firstly evaluated the effect of white rice on developmental rate and fecundity and found that both were detrimentally affected by this diet. The mean time to reach adult stage for the three strains ranged from 40 to 43 days on brown rice and 50–52 days on white rice. The mean number of offspring for the three strains ranged from 7.7 to 10.3 per female over a three day period on brown rice and 2.1 to 2.6 on white rice. Growth and reproduction on wheat was similar to that on brown rice except that the strongly resistant strain showed a tendency toward reduced fecundity on wheat. The susceptible strain exhibited a modest increase in tolerance to phosphine on white rice as expected if thiamine deficiency could mimic the effect of the dld resistance mutation at the rph2 locus. The strongly resistant strain did not respond to thiamine deficiency, but this was expected as these insects are already strongly resistant. We failed, however, to observe the expected synergistic increase in resistance due to combining thiamine deficiency with the weakly resistant strain. The lack of interaction between thiamine content of the diet and the resistance genotype in determining the phosphine resistance phenotype suggests that the mode of inhibition of the complexes is a critical determinant of resistance.