997 resultados para Planar magnetic element
Resumo:
The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.
Resumo:
Magnetization, heat capacity, and neutron diffraction experiments on the beta-phase of the dithiadiazolyl radical, p-NC.C6F4.CNSSN., provide conclusive evidence that this system exhibits noncollinear antiferromagnetism at 35.5 K, an unprecedented temperature for an organic radical. On the basis of magnetization and powder neutron diffraction results, coupled with theoretical calculations of the spin distribution within the molecule, a magnetic structure for this compound is proposed in which the interactions propagate through S . . .N contacts.
Resumo:
We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands for the stem-loop structure located at the exon 10-5'-intron junction of Tau pre-mRNA, which is involved in the onset of several tauopathies including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) have been identified by using DCC. These compounds effectively bind the stem-loop RNA target (the concentration required for 50% RNA response (EC(50)): 2-58 μM), as determined by fluorescence titration experiments. Importantly, most of them are able to stabilize both the wild-type and the +3 and +14 mutated sequences associated with the development of FTDP-17 without producing a significant change in the overall structure of the RNA (as analyzed by circular dichroism (CD) spectroscopy), which is a key factor for recognition by the splicing regulatory machinery. A good correlation has been found between the affinity of the ligands for the target and their ability to stabilize the RNA secondary structure.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
Since the serendipitous discovery of ferrocene by Pauson and Kealy in 1951, it has become one of the most important structures in Organic Chemistry. Lately, kinetic resolution has emerged as a useful tool for the synthesis of planar chiral ferrocenes. This review aims to cover and discuss the development of this topic.
Resumo:
Devolatilization reactions and subsequent transfer of fluid from subducted oceanic crust into the overlying mantle wedge are important processes, which are responsible for the specific geochemical characteristics of subduction-related metamorphic rocks, as well as those of arc magmatism. To better understand the geochemical fingerprint induced by fluid mobilization during dehydration and rehydration processes related to subduction zone metamorphism, the trace element and rare earth element (REE) distribution patterns in HP-LT metamorphic assemblages in eclogite-, blueschist- and greenschist-facies rocks of the Ile de Groix were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analysis. This study focuses on 10 massive basic rocks representing former hydrothermally altered mid-ocean ridge basalts (MORB), four banded basic rocks of volcano-sedimentary origin and one micaschist. The main hosts for incompatible trace elements are epidote (REE, Th, U, Pb, Sr), garnet [Y, heavy REE (HREE)], phengite (Cs, Rb, Ba, B), titanite [Ti, Nb, Ta, REE; HREE > LREE (light REE)], rutile (Ti, Nb, Ta) and apatite (REE, Sr). The trace element contents of omphacite, amphibole, albite and chlorite are low. The incompatible trace element contents of minerals are controlled by the stable metamorphic mineral assemblage and directly related to the appearance, disappearance and reappearance of minerals, especially epidote, garnet, titanite, rutile and phengite, during subduction zone metamorphism. Epidote is a key mineral in the trace element exchange process because of its large stability field, ranging from lower greenschist- to blueschist- and eclogite-facies conditions. Different generations of epidote are generally observed and related to the coexisting phases at different stages of the metamorphic cycle (e.g. lawsonite, garnet, titanite). Epidote thus controls most of the REE budget during the changing P-T conditions along the prograde and retrograde path. Phengite also plays an important role in determining the large ion lithophile element (LILE) budget, as it is stable to high P-T conditions. The breakdown of phengite causes the release of LILE during retrogression. A comparison of trace element abundances in whole-rocks and minerals shows that the HP-LT metamorphic rocks largely retain the geochemical characteristics of their basic, volcano-sedimentary and pelitic protoliths, including a hydrothermal alteration overprint before the subduction process. A large part of the incompatible trace elements remained trapped in the rocks and was recycled within the various metamorphic assemblages stable under changing metamorphic conditions during the subduction process, indicating that devolatilization reactions in massive basic rocks do not necessarily imply significant simultaneous trace element and REE release.
Resumo:
The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)-based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.
Resumo:
Thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily, which act as transcription factors upon binding to specific DNA sequences called thyroid hormone (T3) response elements (TREs). Such elements are found in the upstream regulatory region of promoters as well as in intragenic sequences of T3-responsive genes. In this report, we demonstrate that SV40 late (SVL) promoter activity is strongly down-regulated by TR in the absence of ligand. Addition of T3 releases this repression, but does not further induce SVL promoter activity. Electrophoretic mobility shift analyses reveal a TR binding element that overlaps with the SV40 major late transcription initiation site. This element closely fits the consensus TRE, formed of two hexanucleotides organized in a tandem repeat separated by 4 nt, and is able to confer T3 responsiveness on a heterologous promoter. We further show that, although the presence of TR leads to quantitatively modified expression of an SVL-driven reporter gene, neither displacement of the site of transcription initiation nor modification of the splicing pattern of the primary transcripts occur.
Resumo:
Infections remain the leading cause of death after major burns. Trace elements are involved in immunity and burn patients suffer acute trace element depletion after injury. In a previous nonrandomized study, trace element supplementation was associated with increased leukocyte counts and shortened hospital stays. This randomized, placebo-controlled trial studied clinical and immune effects of trace element supplements. Twenty patients, aged 40 +/- 16 y (mean +/- SD), burned on 48 +/- 17% of their body surfaces, were studied for 30 d after injury. They consumed either standard trace element intakes plus supplements (40.4 micromol Cu, 2.9 micromol Se, and 406 micromol Zn; group TE) or standard trace element intakes plus placebo (20 micromol Cu, 0.4 micromol Se, and 100 micromol Zn; group C) for 8 d. Demographic data were similar for both groups. Mean plasma copper and zinc concentrations were below normal until days 20 and 15, respectively (NS). Plasma selenium remained normal for group TE but decreased for group C (P < 0.05 on days 1 and 5). Total leukocyte counts tended to be higher in group TE because of higher neutrophil counts. Proliferation to mitogens was depressed compared with healthy control subjects (NS). The number of infections per patient was significantly (P < 0.05) lower in group TE (1.9 +/- 0.9) than in group C (3.1 +/- 1.1) because of fewer pulmonary infections. Early trace element supplementation appears beneficial after major burns; it was associated with a significant decrease in the number of bronchopneumonia infections and with a shorter hospital stay when data were normalized for burn size.