963 resultados para Planar Waveguide
Resumo:
This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data. It effectively widens the active–passive retrieved cross-section (RXS) of cloud properties, thereby enabling computation of radiative fluxes and radiances that can be compared with measured values in an attempt to perform radiative closure experiments that aim to assess the RXS. For this introductory study, A-train data were used to verify the scene-construction algorithm and only 1D radiative transfer calculations were performed. The construction algorithm fills off-RXS recipient pixels by computing sums of squared differences (a cost function F) between their spectral radiances and those of potential donor pixels/columns on the RXS. Of the RXS pixels with F lower than a certain value, the one with the smallest Euclidean distance to the recipient pixel is designated as the donor, and its retrieved cloud properties and other attributes such as 1D radiative heating rates are consigned to the recipient. It is shown that both the RXS itself and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery can be reconstructed extremely well using just visible and thermal infrared channels. Suitable donors usually lie within 10 km of the recipient. RXSs and their associated radiative heating profiles are reconstructed best for extensive planar clouds and less reliably for broken convective clouds. Domain-average 1D broadband radiative fluxes at the top of theatmosphere(TOA)for (21 km)2 domains constructed from MODIS, CloudSat andCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data agree well with coincidental values derived from Clouds and the Earth’s Radiant Energy System (CERES) radiances: differences betweenmodelled and measured reflected shortwave fluxes are within±10Wm−2 for∼35% of the several hundred domains constructed for eight orbits. Correspondingly, for outgoing longwave radiation∼65% are within ±10Wm−2.
Resumo:
X-ray scattering curves have been measured for a range of electrochemically-prepared conducting polypyrrole films employing a variety of counterions in aqueous solutions. Films containing counterions based on aromatic rings exhibit an anisotropic molecular organization. The degree of anisotropy is enhanced through the use of highly planar counterions. The electrical conductivity of such films is also improved if the charge/volume ratio of the counterion is maintained at a high level. Polypyrrole films prepared using ‘spherically’ shaped counterions such as SO42− do not display such anisotropic molecular organizations, and exhibit lower electrical conductivities. The competing structural roles of the counterions within these molecular composites are discussed.
Resumo:
Classical strong-stretching theory (SST) predicts that, as opposing polyelectrolyte brushes are compressed together in a salt-free theta solvent, they contract so as to maintain a finite polymer-free gap, which offers a potential explanation for the ultra-low frictional forces observed in experiments even with the application of large normal forces. However, the SST ignores chain fluctuations, which would tend to close the gap resulting in physical contact and in turn significant friction. In a preceding study, we examined the effect of fluctuations using self-consistent field theory (SCFT) and illustrated that high normal forces can still be applied before the gap is destroyed. We now look at the effect of adding salt. It is found to reduce the long-range interaction between the brushes but has little effect on the short-range part, provided the concentration does not enter the salted-brush regime. Consequently, the maximum normal force between two planar brushes at the point of contact is remarkably unaffected by salt. For the crossed-cylinder geometry commonly used in experiments, however, there is a gradual reduction because in this case the long-range part of the interaction contributes to the maximum normal force.
Resumo:
Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.
Resumo:
Four new trinuclear hetero-metallic nickel(II)-cadmium(II) complexes [(NiL)(2)Cd(NCS)(2)] (1A and 1B), [(NiL)(2)Cd(NCO)(2)] (2) and [(NiL)(2)Cd(N-3)(2)] (3) have been synthesized using [NiL] as a so-called "ligand complex" (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Crystal structure analyses reveal that all four complexes contain a trinuclear moiety in which two square planar [NiL] units are bonded to a central cadmium(II) ion through double phenoxido bridges. The Cd(II) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1A and 1B), cyanate (in 2) and azide (in 3). Complexes 1A and 1B have the same molecular formula but crystallize in very different monoclinic unit cells and can be considered as polymorphs. On the other hand, the two isoelectronic complexes 2 and 3 are indeed isomorphous and crystallize only in one form. Their conformation is similar to that observed in 1A.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
New monometallic complex salts of the form X-2[M(L)(2)] [M = Ni2+, X = (CH3)(2)NH2+(1); M = Ni2+, X = (CH3)(4)N+ (2); M = Ni2+, X = (C2H5)(4)N+(3); M = Ni2+, X = (C3H7)(4)N+(4); M = Ni2+; X = (C6H13)(4)N+) (5); M = Pd2+,X = (CH3)(2)NH2+(6); M = Pd2+, X= (C2H5)(4)N+(7); M = Pd2+, X= (C3H7)(4)N+(8); M = Pd2+, X = (C6H13)(4)N+ (9); M = Pt2+, X = (CH3)(2)NH2+(10); L = p-tolylsulfonyldithiocarbimate (CH3C6H4SO2N=CS22 )] have been prepared and characterized by elemental analysis, IR, H-1 and C-13 NMR and UV-Vis spectroscopy; 1, 3, 4 and 5 by X-ray crystallography. In 1, 3, 4 and 5, the Ni atom is four coordinate with a square planar environment being bonded to four sulfur atoms from two bidentate ligands. All the salts are weakly conducting (sigma(rt) = 10 (7) to 10 (14) Scm (1)) because of the lack of significant S center dot center dot center dot S intermolecular interactions between complex anions [M(L)(2)](2) in the solid state however, they show behavior of semiconductors in the temperature range 353-453 K. All the Pd(II) and Pt(II) salts exhibited phtotolumeniscent emissions near visible region in solution at room temperature.
Resumo:
A 1,1' bis(diphenyl phosphino ferrocene) dioxide complex of the uranyl dichloride was synthesized and characterized by elemental analysis, H-1, P-31{H-1} NMR and X-ray diffraction methods. The structure of the compound shows that the uranium(VI) ion is surrounded by four oxygen and two chlorine atoms in an octahedral geometry. Two oxygen atoms from the bis (diphenyl phosphino ferrocene) dioxide and two chlorine atoms form a square planar arrangement. Two uranyl oxygen atoms occupy the axial positions. The bis(diphenyl phosphino ferrocene) dioxide ligand acts as a bidentate chelating ligand with a bite angle of 82.90(16)degrees around the uranyl group. The two chlorine atoms are mutually cis with a CI-U-Cl angle of 97.75(7)degrees.
Resumo:
A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2–300K and with 100Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1=−638cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2=−34cm−1) interaction between N–C–N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.
Resumo:
An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(II) (3), Pt(II) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(II) and Pt(II) center reveals C-H center dot center dot center dot Pd and C-H center dot center dot center dot Pt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with sigma(rt) values similar to 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.
Resumo:
A new tri-functional ligand (Bu2NCOCH2SO2CH2CONBu2)-Bu-i-Bu-i (L) was prepared and characterized. The coordination chemistry of this ligand with uranyl nitrate was studied with IR, (HNMR)-H-1, ES-MS, TG and elemental analysis methods. The structure of the compound [UO2(NO3)(2)L] was determined by single crystal X-ray diffraction techniques. In the structure the uranium(VI) ion is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Four oxygen atoms from two nitrate groups and two oxygen atoms from the ligand form a planar hexagon. The ligand acts as a bidentate chelate and bonds through both the carbamoyl groups to the uranyl nitrate. An ES-MS spectrum shows that the complex retains the bonding in solution. The compound displayed vibronically coupled fluorescence emission.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.