967 resultados para Piecewise ordinary differential equations
Resumo:
The shape modes of a damped-free beam model with a tip rotor are determined by using a dynamical basis that is generated by a fundamental spatial free response. This is a non-classical distributed model for the displacements in the transverse directions of the beam which turns out to be coupled through boundary conditions due to rotation. Numerical calculations are performed by using the Ritz-Rayleigh method with several approximating basis.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
Resumo:
In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.
Resumo:
The edges detection model by a non-linear anisotropic diffusion, consists in a mathematical model of smoothing based in Partial Differential Equation (PDE), alternative to the conventional low-pass filters. The smoothing model consists in a selective process, where homogeneous areas of the image are smoothed intensely in agreement with the temporal evolution applied to the model. The level of smoothing is related with the amount of undesired information contained in the image, i.e., the model is directly related with the optimal level of smoothing, eliminating the undesired information and keeping selectively the interest features for Cartography area. The model is primordial for cartographic applications, its function is to realize the image preprocessing without losing edges and other important details on the image, mainly airports tracks and paved roads. Experiments carried out with digital images showed that the methodology allows to obtain the features, e.g. airports tracks, with efficiency.
Resumo:
In this paper we consider the transmission problem, in one space dimension, for linear dissipative waves with frictional damping. We study the wave propagation in a medium with a component with attrition and another simply elastic. We show that for this type of material, the dissipation produced by the frictional part is strong enough to produce exponential decay of the solution, no matter how small is its size. ©2007 Texas State University.
Resumo:
Some dynamical properties of the one dimensional Fermi accelerator model, under the presence of frictional force are studied. The frictional force is assumed as being proportional to the square particle's velocity. The problem is described by use of a two dimensional non linear mapping, therefore obtained via the solution of differential equations. We confirm that the model experiences contraction of the phase space area and in special, we characterized the behavior of the particle approaching an attracting fixed point. © 2007 American Institute of Physics.
Resumo:
In this paper we study the local codimension one, two and three Hopf bifurcations which occur in the classical Chua's differential equations with cubic nonlinearity. A detailed analytical description of the regions in the parameter space for which multiple small periodic solutions bifurcate from the equilibria of the system is obtained. As a consequence, a complete answer for the challenge proposed in [Moiola & Chua, 1999] is provided. © 2009 World Scientific Publishing Company.
Resumo:
In this paper a new partial differential equation based method is presented with a view to denoising images having textures. The proposed model combines a nonlinear anisotropic diffusion filter with recent harmonic analysis techniques. A wave atom shrinkage allied to detection by gradient technique is used to guide the diffusion process so as to smooth and maintain essential image characteristics. Two forcing terms are used to maintain and improve edges, boundaries and oscillatory features of an image having irregular details and texture. Experimental results show the performance of our model for texture preserving denoising when compared to recent methods in literature. © 2009 IEEE.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.
Resumo:
This article presents and discusses a maximum principle for infinite horizon constrained optimal control problems with a cost functional depending on the state at the final time. The main feature of these optimality conditions is that, under reasonably weak assumptions, the multiplier is shown to satisfy a novel transversality condition at infinite time. It is also shown that these conditions can also be obtained for impulsive control problems whose dynamics are given by measure driven differential equations. © 2011 IFAC.
Resumo:
Once defined the relationship between the Starter Motor components and their functions, it is possible to develop a mathematical model capable to predict the Starter behavior during operation. One important aspect is the engagement system behavior. The development of a mathematical tool capable of predicting it is a valuable step in order to reduce the design time, cost and engineering efforts. A mathematical model, represented by differential equations, can be developed using physics laws, evaluating force balance and energy flow through the systems degrees of freedom. Another important physical aspect to be considered in this modeling is the impact conditions (particularly on the pinion and ring-gear contact). This work is a report of those equations application on available mathematical software and the resolution of those equations by Runge-Kutta's numerical integration method, in order to build an accessible engineering tool. Copyright © 2011 SAE International.
Resumo:
This paper describes a computational model based on lumped elements for the mutual coupling between phases in three-phase transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile of the currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2011 IEEE.
Resumo:
An analytical approach for spin stabilized attitude propagation is presented, considering the coupled effect of the aerodynamic torque and the gravity gradient torque. A spherical coordination system fixed in the satellite is used to locate the satellite spin axis in relation to the terrestrial equatorial system. The spin axis direction is specified by its right ascension and the declination angles and the equation of motion are described by these two angles and the magnitude of the spin velocity. An analytical averaging method is applied to obtain the mean torques over an orbital period. To compute the average components of both aerodynamic torque and the gravity gradient torque in the satellite body frame reference system, an average time in the fast varying orbit element, the mean anomaly, is utilized. Afterwards, the inclusion of such torques on the rotational motion differential equations of spin stabilized satellites yields conditions to derive an analytical solution. The pointing deviation evolution, that is, the deviation between the actual spin axis and the computed spin axis, is also availed. In order to validate the analytical approach, the theory developed has been applied for spin stabilized Brazilian satellite SCD1, which are quite appropriated for verification and comparison of the data generated and processed by the Satellite Control Center of the Brazil National Research Institute (INPE). Numerical simulations performed with data of Brazilian Satellite SCD1 show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of the Brazilian Research Institute.
Resumo:
A transmission line digital model is developed direct in the phase and time domains. The successive modal transformations considered in the three-phase representation are simplified and then the proposed model can be easily applied to several operation condition based only on the previous knowing of the line parameters, without a thorough theoretical knowledge of modal analysis. The proposed model is also developed based on lumped elements, providing a complete current and voltage profile at any point of the transmission system. This model makes possible the modeling of non-linear power devices and electromagnetic phenomena along the transmission line using simple electric circuit components, representing a great advantage when compared to several models based on distributed parameters and inverse transforms. In addition, an efficient integration method is proposed to solve the system of differential equations resulted from the line modeling by lumped elements, thereby making possible simulations of transient and steady state using a wide and constant integration step. © 2012 IEEE.