998 resultados para Physics, Particles
Resumo:
KNOTS are usually categorized in terms of topological properties that are invariant under changes in a knot's spatial configuration(1-4). Here we approach knot identification from a different angle, by considering the properties of particular geometrical forms which we define as 'ideal'. For a knot with a given topology and assembled from a tube of uniform diameter, the ideal form is the geometrical configuration having the highest ratio of volume to surface area. Practically, this is equivalent to determining the shortest piece of tube that can be closed to form the knot. Because the notion of an ideal form is independent of absolute spatial scale, the length-to-diameter ratio of a tube providing an ideal representation is constant, irrespective of the tube's actual dimensions. We report the results of computer simulations which show that these ideal representations of knots have surprisingly simple geometrical properties. In particular, there is a simple linear relationship between the length-to-diameter ratio and the crossing number-the number of intersections in a two-dimensional projection of the knot averaged over all directions. We have also found that the average shape of knotted polymeric chains in thermal equilibrium is closely related to the ideal representation of the corresponding knot type. Our observations provide a link between ideal geometrical objects and the behaviour of seemingly disordered systems, and allow the prediction of properties of knotted polymers such as their electrophoretic mobility(5).
Resumo:
The UHPLC strategy which combines sub-2 microm porous particles and ultra-high pressure (>1000 bar) was investigated considering very high resolution criteria in both isocratic and gradient modes, with mobile phase temperatures between 30 and 90 degrees C. In isocratic mode, experimental conditions to reach the maximal efficiency were determined using the kinetic plot representation for DeltaP(max)=1000 bar. It has been first confirmed that the molecular weight of the compounds (MW) was a critical parameter which should be considered in the construction of such curves. With a MW around 1000 g mol(-1), efficiencies as high as 300,000 plates could be theoretically attained using UHPLC at 30 degrees C. By limiting the column length to 450 mm, the maximal plate count was around 100,000. In gradient mode, the longest column does not provide the maximal peak capacity for a given analysis time in UHPLC. This was attributed to the fact that peak capacity is not only related to the plate number but also to column dead time. Therefore, a compromise should be found and a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 degrees C, while the columns coupled in series (3x 150 mm) were attractive only for t(grad)>250 min. Compared to 30 degrees C, peak capacities were increased by about 20-30% for a constant gradient length at 90 degrees C and gradient time decreased by 2-fold for an identical peak capacity.
Resumo:
During the replication cycle of vaccinia virus, four different forms of viral particles are produced. The two extracellular enveloped forms, cell-associated enveloped virus and extracellular enveloped virus, are responsible for cell-to-cell transmission and long-range spread of infection both in vivo and in vitro. Despite the biological importance of the enveloped forms, the mechanism of envelopment and the components involved in this process have been analysed only recently. Therefore the individual steps and the rate-limiting factors of the envelopment process are still unknown. The protein p37K, an unglycosylated but acylated envelope protein of molecular mass 37 kDa, has been shown to be essential for envelopment. However, this study shows that over-expression of p37K by vaccinia virus recombinants reduces rather than increases the yield of infectious enveloped virus which is mainly due to the enveloped virions exhibiting a strongly diminished specific infectivity.
Resumo:
The concept of ideal geometric configurations was recently applied to the classification and characterization of various knots. Different knots in their ideal form (i.e., the one requiring the shortest length of a constant-diameter tube to form a given knot) were shown to have an overall compactness proportional to the time-averaged compactness of thermally agitated knotted polymers forming corresponding knots. This was useful for predicting the relative speed of electrophoretic migration of different DNA knots. Here we characterize the ideal geometric configurations of catenanes (called links by mathematicians), i.e., closed curves in space that are topologically linked to each other. We demonstrate that the ideal configurations of different catenanes show interrelations very similar to those observed in the ideal configurations of knots. By analyzing literature data on electrophoretic separations of the torus-type of DNA catenanes with increasing complexity, we observed that their electrophoretic migration is roughly proportional to the overall compactness of ideal representations of the corresponding catenanes. This correlation does not apply, however, to electrophoretic migration of certain replication intermediates, believed up to now to represent the simplest torus-type catenanes. We propose, therefore, that freshly replicated circular DNA molecules, in addition to forming regular catenanes, may also form hemicatenanes.
Resumo:
One of the unresolved questions of modern physics is the nature of Dark Matter. Strong experimental evidences suggest that the presence of this elusive component in the energy budget of the Universe is quite significant, without, however, being able to provide conclusive information about its nature. The most plausible scenario is that of weakly interacting massive particles (WIMPs), that includes a large class of non-baryonic Dark Matter candidates with a mass typically between few tens of GeV and few TeVs, and a cross section of the order of weak interactions. Search for Dark Matter particles using very high energy gamma-ray Cherenkov telescopes is based on the model that WIMPs can self-annihilate, leading to production of detectable species, like photons. These photons are very energetic, and since unreflected by the Universe's magnetic fields, they can be traced straight to the source of their creation. The downside of the approach is a great amount of background radiation, coming from the conventional astrophysical objects, that usually hides clear signals of the Dark Matter particle interactions. That is why good choice of the observational candidates is the crucial factor in search for Dark Matter. With MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes), a two-telescope ground-based system located in La Palma, Canary Islands, we choose objects like dwarf spheroidal satellite galaxies of the Milky Way and galaxy clusters for our search. Our idea is to increase chances for WIMPs detection by pointing to objects that are relatively close, with great amount of Dark Matter and with as-little-as-possible pollution from the stars. At the moment, several observation projects are ongoing and analyses are being performed.
Resumo:
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.
Resumo:
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.
Resumo:
Fine particulate matter from traffic increases mortality and morbidity. An important source of traffic particles is brake wear. American studies reported cars to emit break wear particles at a rate of about 11mg/km to 20mg/km of driven distance. A German study estimated that break wear contributes about 12.5% to 21% of the total traffic particle emissions. The goal of this study was to build a system that allows the study of brake wear particle emissions during different braking behaviours of different car and brake types. The particles should be characterize in terms of size, number, metal, and elemental and organic carbon composition. In addition, the influence of different deceleration schemes on the particle composition and size distribution should be studied. Finally, this system should allow exposing human cell cultures to these particles. An exposure-box (0.25 cubic-m volume) was built that can be mounted around a car's braking system. This allows exposing cells to fresh brake wear particles. Concentrations of particle numbers, mass and surface, metals, and carbon compounds were quantified. Tests were conducted with A549 lung epithelial cells. Five different cars and two typical braking behaviours (full stop and normal deceleration) were tested. Particle number and size distribution was analysed for the first six minutes. In this time, two braking events occurred. Full stop produced significantly higher particle concentrations than normal deceleration (average of 23'000 vs. 10'400 #/cm3, p= 0.016). The particle number distribution was bi-modal with one peak at 60 to 100 nm (depending on the tested car and braking behaviour) and a second peak at 200 to 400 nm. Metal concentrations varied depending on the tested car type. Iron (range of 163 to 15'600 μg/m3) and Manganese (range of 0.9 to 135 μg/m3) were present in all samples, while Copper was absent in some samples (<6 to 1220 μg/m3). The overall "fleet" metal ratio was Fe:Cu:Mn = 128:14:1. Temperature and humidity varied little. A549-cells were successfully exposed in the various experimental settings and retained their viability. Culture supernatant was stored and cell culture samples were fixated to test for inflammatory response. Analysis of these samples is ongoing. The established system allowed testing brake wear particle emissions from real-world cars. The large variability of chemical composition and emitted amounts of brake wear particles between car models seems to be related to differences between brake pad compositions of different producers. Initial results suggest that the conditions inside the exposure box allow exposing human lung epithelial cells to freshly produced brake wear particles.
Resumo:
Synchrotron radiation X-ray tomographic microscopy is a nondestructive method providing ultra-high-resolution 3D digital images of rock microstructures. We describe this method and, to demonstrate its wide applicability, we present 3D images of very different rock types: Berea sandstone, Fontainebleau sandstone, dolomite, calcitic dolomite, and three-phase magmatic glasses. For some samples, full and partial saturation scenarios are considered using oil, water, and air. The rock images precisely reveal the 3D rock microstructure, the pore space morphology, and the interfaces between fluids saturating the same pore. We provide the raw image data sets as online supplementary material, along with laboratory data describing the rock properties. By making these data sets available to other research groups, we aim to stimulate work based on digital rock images of high quality and high resolution. We also discuss and suggest possible applications and research directions that can be pursued on the basis of our data.
Resumo:
An alternative approach to the fundamental general physics concepts has been proposed. We demonstrate that the electrostatic potential energy of a discrete or a continuous system of charges should be stored by the charges and not the field. It is found that there is a possibility that any electric field has no energy density, as well as magnetic field. It is found that there is no direct relation between the electric or magnetic energy and photons. An alternative derivation of the blackbody radiation formula is proposed. It is also found that the zero-point of energy of electromagnetic radiation may not exist.
Resumo:
Exposure to fine particles and noise has been linked to cardiovascular diseases and elevated cardiovascular mortality affecting the worldwide population. Residence and/or work in proximity to emission sources as for example road traffic leads to an elevated exposure and a higher risk for adverse health effects. Highway maintenance workers spend most of their work time in traffic and are exposed regularly to particles and noise. The aims of this thesis were to provide a better understanding of the workers' mixed exposure to particles and noise and to assess cardiopulmonary short term health effects in relation to this exposure. Exposure and health data were collected in collaboration with 8 maintenance centers of the Swiss Road Maintenance Services located in the cantons Bern, Fribourg and Vaud in western Switzerland. Repeated measurements with 18 subjects were conducted during 50 non-consecutive work shifts between Mai 2010 and February 2012, equally distributed over all seasons. In the first part of this thesis we tested and validated measurements of ultrafine particles with a miniature diffusion size classifier (miniDiSC) - a novel particle counting device that was used for the exposure assessment during highway maintenance work. We found that particle numbers and average particle size measured by the miniDiSC were highly correlated with data from the P-TRAK, a condensation particle counter (CPC), as well as from a scanning mobility particle sizer (SMPS). However, the miniDiSC measured significantly more particles than the P-TRAK and significantly less than the SMPS in its full size range. Our data suggests that the instrument specific cutoffs were the main reason for the different particle counts. The first main objective of this thesis was to investigate the exposure of highway maintenance workers to air pollutants and noise, in relation to the different maintenance activities. We have seen that the workers are regularly exposed to high particle and noise levels. This was a consequence of close proximity to highway traffic and the use of motorized working equipment such as brush cutters, chain saws, generators and pneumatic hammers during which the highest exposure levels occurred. Although exposure to air pollutants were not critical if compared to occupational exposure limits, the elevated exposure to particles and noise may lead to a higher risk for cardiovascular diseases in this worker population. The second main objective was to investigate cardiopulmonary short-term health effects in relation to the particle and noise exposure during highway maintenance work. We observed a PM2.5 related increase of the acute-phase inflammation markers C-reactive protein and serum amyloid A and a decrease of TNFa. Heart rate variability increased as a consequence of particle as well as noise exposure. Increased high frequency power indicated a stronger parasympathetic influence on the heart. Elevated noise levels during recreational time, after work, were related to increased blood pressure. Our data confirmed that highway maintenance workers are exposed to elevated levels of particles and noise as compared to the average population. This exposure poses a cardiovascular health risk and it is therefore important to make efforts to better protect the workers health. The use of cleaner machines during maintenance work would be a major step to improve the workers' situation. Furthermore, regulatory policies with the aim of reducing combustion and non-combustion emissions from road traffic are important for the protection of workers in traffic environments and the entire population.