913 resultados para Phylogenetic analysis
Resumo:
Background: Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses.Results: The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes.Conclusions: We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also observe that the number of telocentric chromosomes is useful to distinguish among valid species in some cases, although it is unchanged in species that are not necessarily closely related phylogenetically. Therefore, inferences based on this chromosomal character must be made with caution; a proper evolutionary analysis of the karyotypic variation in Dendropsophus depends on further characterization of the telocentric chromosomes found in this group. © 2013 Medeiros et al.; licensee BioMed Central Ltd.
Resumo:
Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the beta-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the beta-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and beta-tubulin). The phylogenetic study of the partial beta-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.
Resumo:
A new species of the genus Henneguya (Henneguya multiplasmodialis n. sp.) was found infecting the gills of three of 89 specimens (3.3%) of Pseudoplatystoma corruscans and two of 79 specimens (2.6%) of Pseudoplatystoma reticulatum from rivers in the Pantanal wetland, Brazil. Partial sequencing of the 18S rDNA gene of the spores obtained from one plasmodium from the gills of P. corruscans and other one from the gills of P. reticulatum, respectively, resulted in a total of 1560 and 1147 base pairs. As the spores of H. multiplasmodialis n. sp. resemble those of Henneguya corruscans, which is also a parasite of P. corruscans, sequencing of the 18S rDNA gene of the spores of H. corruscans found on P. corruscans caught in the Brazilian Pantanal wetland was also provided to avoid any taxonomic pendency between these two species, resulting in 1913 base pairs. The sequences of H. multiplasmodialis n. sp. parasite of P. corruscans and P. reticulatum and H. corruscans did not match any of the Myxozoa available in the GenBank. The similarity of H. multiplasmodialis n. sp. obtained from P. corruscans to that from P. reticulatum was of 99.7%. Phylogeny revealed a strong tendency among Henneguya species to form clades based on the order and/or family of the host fish. H. multiplasmodialis n. sp. clustered in a clade with Henneguya eirasi and H. corruscans, which are also parasites of siluriforms of the family Pimelodidae and, together with the clade composed of Henneguya spp. parasites of siluriforms of the family Ictaluridae, formed a monophyletic clade of parasites of siluriform hosts. The histological study revealed that the wall of the plasmodia of H. multiplasmodialis n. sp. were covered with a stratified epithelium rich in club cells and supported by a layer of connective tissue. The interior of the plasmodia had a network of septa that divided the plasmodia into numerous compartments. The septa were composed of connective tissue also covered on both sides with a stratified epithelium rich in club cells. Inflammatory infiltrate was found in the tissue surrounding the plasmodia as well as in the septa. (C) 2011 Elsevier B.V. All rights reserved.
Phylogenetic and virulence analysis of tick-borne encephalitis virus field isolates from Switzerland
Resumo:
Tick-borne encephalitis (TBE) is an endemic disease in Switzerland, with about 110-120 reported human cases each year. Endemic areas are found throughout the country. However, the viruses circulating in Switzerland have not been characterized so far. In this study, the complete envelope (E) protein sequences and phylogenetic classification of 72 TBE viruses found in Ixodes ricinus ticks sampled at 39 foci throughout Switzerland were analyzed. All isolates belonged to the European subtype and were highly related (mean pairwise sequence identity of 97.8% at the nucleotide and 99.6% at the amino acid level of the E protein). Sixty-four isolates were characterized in vitro with respect to their plaque phenotype. More than half (57.8%) of isolates produced a mixture of plaques of different sizes, reflecting a heterogeneous population of virus variants. Isolates consistently forming plaques of small size were associated with recently detected endemic foci with no or only sporadic reports of clinical cases. All of six virus isolates investigated in an in vivo mouse model were highly neurovirulent (100% mortality) but exhibited a relatively low level of neuroinvasiveness, with mouse survival rates ranging from 50% to 100%. Therefore, TBE viruses circulating in Switzerland belong to the European subtype and are closely related. In vitro and in vivo surrogates suggest a high proportion of isolates with a relatively low level of virulence, which is in agreement with a hypothesized high proportion of subclinical or mild TBE infections.
Resumo:
Phylogenetic analyses are increasingly used in attempts to clarify transmission patterns of human immunodeficiency virus type 1 (HIV-1), but there is a continuing discussion about their validity because convergent evolution and transmission of minor HIV variants may obscure epidemiological patterns. Here we have studied a unique HIV-1 transmission cluster consisting of nine infected individuals, for whom the time and direction of each virus transmission was exactly known. Most of the transmissions occurred between 1981 and 1983, and a total of 13 blood samples were obtained approximately 2-12 years later. The p17 gag and env V3 regions of the HIV-1 genome were directly sequenced from uncultured lymphocytes. A true phylogenetic tree was constructed based on the knowledge about when the transmissions had occurred and when the samples were obtained. This complex, known HIV-1 transmission history was compared with reconstructed molecular trees, which were calculated from the DNA sequences by several commonly used phylogenetic inference methods [Fitch-Margoliash, neighbor-joining, minimum-evolution, maximum-likelihood, maximum-parsimony, unweighted pair group method using arithmetic averages (UPGMA), and a Fitch-Margoliash method assuming a molecular clock (KITSCH)]. A majority of the reconstructed trees were good estimates of the true phylogeny; 12 of 13 taxa were correctly positioned in the most accurate trees. The choice of gene fragment was found to be more important than the choice of phylogenetic method and substitution model. However, methods that are sensitive to unequal rates of change performed more poorly (such as UPGMA and KITSCH, which assume a constant molecular clock). The rapidly evolving V3 fragment gave better reconstructions than p17, but a combined data set of both p17 and V3 performed best. The accuracy of the phylogenetic methods justifies their use in HIV-1 research and argues against convergent evolution and selective transmission of certain virus variants.
Resumo:
Sugarcane orange rust, caused by Puccinia kuehnii, was once considered a minor disease in the Australian sugar industry. However, in 2000 a new race of the pathogen devastated the high-performing sugarcane cultivar Q124, and caused the industry Aus$150–210 million in yield losses. At the time of the epidemic, very little was known about the genetic and pathogenic diversity of the fungus in Australia and neighbouring sugar industries. DNA sequence data from three rDNA regions were used to determine the genetic relationships between isolates within two P. kuehnii collections. The first collection comprised only recent Australian field isolates and limited sequence variation was detected within this population. In the second study, Australian isolates were compared with isolates from Papua New Guinea, Indonesia, China and historical herbarium collections. Greater sequence variation was detected in this collection and phylogenetic analyses grouped the isolates into three clades. All isolates from commercial cane fields clustered together including the recent Australianfield isolates and the Australian historical isolate from 1898.The other two clades included rust isolates from wild and garden canes in Indonesia and PNG. These rusts appeared morphologically similar to P. kuehnii and could potentially pose a quarantine threat to the Australian sugar industry. The results have revealed greater diversity in sugarcane rusts than previously thought.
Resumo:
Skipjack (SJT) (Katsuwonus pelamis) is a medium sized, pelagic, highly dispersive tuna species that occurs widely across tropical and subtropical waters. SJT constitute the largest tuna fishery in the Indian Ocean, and are currently managed as a single stock. Patterns of genetic variation in a mtDNA gene and 6 microsatellite loci were examined to test for stock structure in the northwestern Indian Ocean. 324 individuals were sampled from five major fishing grounds around Sri Lanka, and single sites in the Maldive Islands and the Laccadive Islands. Phylogenetic reconstruction of mtDNA revealed two coexisting divergent clades in the region. AMOVA (Analysis of Molecular Variance) of mtDNA data revealed significant genetic differentiation among sites (ΦST = 0.2029, P < 0.0001), also supported by SAMOVA results. AMOVA of microsatellite data also showed significant differentiation among most sampled sites (FST = 0.0256, P<0.001) consistent with the mtDNA pattern. STRUCTURE analysis of the microsatellite data revealed two differentiated stocks. While the both two marker types examined identified two genetic groups, microsatellite analysis indicates that the sampled SJT are likely to represent individuals sourced from discrete breeding grounds that are mixed in feeding grounds in Sri Lankan waters.
Resumo:
Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.
Resumo:
Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou–moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou–moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous–Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. [Base composition; flightless; Gondwana; mitochondrial genome; Palaeognathae; phylogeny; ratites.]
Resumo:
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modelling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001-2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence.
Resumo:
Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.