947 resultados para Photovoltaic energy
Resumo:
Three independent studies have been reported on the free energy of formation of NiWO4. Results of these measurements are analyzed by the �third-law� method, using thermal functions for NiWO4 derived from both low and high temperature heat capacity measurements. Values for the standard molar enthalpy of formation of NiWO4 at 298·15 K obtained from �third-law� analysis are compared with direct calorimetric determinations. Only one set of free energy measurements is found to be compatible with calorimetric enthalpies of formation. The selected value for ?f H m 0 (NiWO4, cr, 298·15 K) is the average of the three calorimetric measurements, using both high temperature solution and combustion techniques, and the compatible free energy determination. A new set of evaluated data for NiWO4 is presented.
Resumo:
We have calculated the binding energy of a hydrogenic donor in a quantum well with potential shape proportional to \z\(2/3) as a function of the width of the quantum well and the barrier height under an applied uniform magnetic field along the a axis. As the well width decreases, the binding energy increases initially up to a critical well width (which is nearly the same for all magnetic fields) at which there is a turnover. The results are qualitatively similar to those of a hydrogenic donor in a rectangular well. We have also calculated [rho(2)](1/2) and [z(2)](1/2) for the donor electron. [rho(2)](1/2) is found to be strongly dependent on the magnetic field for a given well width and weakly dependent on the well width and the barrier height, for a given value of magnetic field [z(2)](1/2) is weakly dependent on the applied magnetic field. The probability of finding the donor electron inside the well shows a rapid decrease as the well width is reduced at nearly the well width at which the binding energy shows a maximum.
Resumo:
The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.
Resumo:
Bremsstrahlung isochromat spectroscopy (BIS) along with ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) has been employed to investigate the electron states of Pd and Ag deposited on amorphous graphite at different coverages. The metal core level binding energies increase with decreasing cluster size while the UPS valence bands show a decrease in the 4d states at E(F) accompanied by a shift in the intensity maximum to higher binding energies. BIS measurements show the emergence of new states closer to E(F) with increase in the cluster size. It is pointed out that the observed spectral shifts cannot be accounted for by final-state effects alone and that initial-state effects have a significant role. It therefore appears that a decrease in cluster size is accompanied by a metal-insulator transition.
Resumo:
Anatase titania nanotubes (TNTs) have been synthesized from P25 TiO2 powder by alkali hydrothermal method followed by post annealing. The microstructure analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of anatase nanotubes with a diameter of 9-10 nm. These NTs are used to make photo anode in dye-sensitized solar cells (DSSCs). Layer by layer deposition with curing of each layer at 350 C is employed to realize films of desired thickness. The performance of these cells is studied using photovoltaic measurements. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the effect of thickness on the performance of these cells. These studies revealed that the thickness of TiO2 has a pronounced impact on the cell performance and the optimum thickness lies in the range of 10-14 mu m. In comparison to dye solar cells made of P25, TNTs based cells exhibit an improved open circuit voltage and fill factor (FF) due to an increased electron lifetime, as revealed by EIS analysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.
Resumo:
Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.
Resumo:
The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.
Resumo:
he chemical potential of carbon in diamond, relative to its value in graphite, has been directly determined using a solid state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The cell can be represented as Pt, C(graphite) + CaC2 + CaF2double vertical barCaF2double vertical barCaF2 + CaC2 + C(diamond), Pt The reversible emf of this cell is directly related by the Nernst equation to the Gibbs free energy change for the conversion of diamond to graphite. The difference in the chemical potential of carbon in the two crystal structures varies linearly with temperature in the range 940 to 1260 K ?C(diamond) ? ?C(graphite) = 1100 + 4.64T (±50) J mol?1 On the average, the values given by the equation are 320 J mol?1 less positive than the currently accepted ones based on calorimetric studies. The difference is primarily in the enthalpy term.
Resumo:
Reflection electron energy-loss spectra are reported for the family of compounds TiOx over the entire homogeneity range (0.8 < a: < 1.3). The spectra exhibit a plasmon feature on the low-energy side, while several interband transitions are prominent at higher energies. The real and imaginary parts of dielectric functions and optical conductivity for these compounds are determined using the Kramers-Kronig analysis. The results exhibit systematic behavior with varying oxygen stoichiometry.
Resumo:
Time scales associated with activated transitions between glassy metastable states of a free-energy functional appropriate for a dense hard-sphere system are calculated by using a new Monte Carlo method for the local density variables. In particular, we calculate the time the system, initially placed in a shallow glassy minimum of the free-energy, spends in the neighborhood of this minimum before making a transition to the basin of attraction of another free-energy minimum. This time scale is found to increase as the average density is increased. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This time scale does not show any evidence of increasing with sample size
Resumo:
The convective available potential energy (CAFE) based on monthly mean sounding has been shown to be relevant to deep convection in the tropics. The variation of CAFE with SST has been found to be similar to the variation of the frequency of deep convection at one station each in the tropical Atlantic and W. Pacific oceans. This suggests a strong link between the frequency of tropical convection and CAFE. It has been shown that CAFE so derived can be interpreted as the work potential of the atmosphere above the boundary layer with ascent in the convective region and subsidence in the surrounding cloud-free region.
Resumo:
A geometric invariant is associated to the space of fiat connections on a G-bundle over a compact Riemann surface and is related to the energy of harmonic functions.
Resumo:
Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.