950 resultados para Philipp I, der Grossmütige, landgrave of Hesse, 1504-1567.
Resumo:
Diastereomers (SRu,Sc)-1a and (RRu,Sc)-1b, in a ratio of 85: 15 and formulated as [Ru(η-MeC6H4Pri-p)Cl(L*)], have been prepared by treating [{Ru(η-MeC6H4Pri-p)Cl2}2] with the sodium salt of (S)-α-methylbenzylsalicylaldimine (HL*) in tetrahydrofuran at –70 °C. The reaction of 1(1a+1b) with AgClO4 in acetone followed by an addition of PPh3 or 4-methylpyridine (4Me-py) leads to the formation of adducts [Ru(η-MeC6H4Pri-p)(PPh3)(L*)]ClO42[(SRu,Sc)2a, (FRu,Sc)2b] and [Ru(η-MeC6H4Pri-p)(4Me-py)(L*)]ClO43[(SRu,Sc)3a, (RRu,Sc)3b] in the diastereomeric ratios (SRu,Sc) : (RRu,Sc) of 2 : 98 and 76 : 24, respectively. Complex 1 crystallises with equal numbers of 1a and 1b molecules in an asymmetric unit of monoclinic space group P21 with a= 10.854(1), b= 17.090(1), c= 12.808(4)Å, β= 110.51(1)°, and Z= 4. The structure was refined to R= 0.0552 and R′= 0.0530 with 2893 reflections having I[gt-or-equal] 1.5σ(I). The absolute configurations of the chiral centres in the optically pure single crystal of the PPh3 adduct have been obtained from an X-ray study. Crystals of formulation [Ru(η-MeC6H4Pri-p)-(PPh3)(L*)]2[ClO4][PF6]·1.5 CHCl3, obtained in presence of both ClO4 and PF6 anions, belong to the non-centric triclinic space group P1 with a= 10.852(2), b= 14.028(1), c= 15.950(2)Å, α= 91.51(1), β= 105.97(1), γ= 106.11(1)°, and Z= 2. The final residuals were R= 0.0713, R′= 0.0752 with 7283 reflections having I[gt-or-equal] 2.5σ(I). The crystal structures of 1a,1b, and the PPh3 adduct (2b,2b′) consist of a ruthenium(II) centre bonded to a η-p-cymene, a bidentate chelating Schiff base, and a unidentate ligand (Cl or PPh3). The chirooptical properties of the complexes have been studied using 1H NMR and CD spectral data. The presence of a low-energy barrier for the intermediate involved in these reactions, showing both retention as well as inversion of the metal configuration, is discussed.
Resumo:
There are three ways in which an electromagnetic wave can undergo scattering in a plasma: (i) when the scattering of radiation occurs by a single electron, it is called Compton Scattering (CS); (ii) if it occurs by a longitudinal electron plasma mode, it is called Stimulated Raman Scattering (SRS), and (iii) if it occurs by a highly damped electron plasma mode, it is called Stimulated Compton Scattering (SCS). The non-thermal continuum of quasars is believed to be produced through the combined action of synchrotron and inverse Compton processes, which are essentially single-particle processes. Here, we investigate the role of SRS and SCS in the generation of continuum radiation from these compact objects. It is shown as an example that the complete spectrum of 3C 273 can be reproduced by suitably combining SCS and SRS. The differential contributions of SCS and SRS under different values of the plasma parameters are also calculated.
Resumo:
It was shown earlier that the monoterpene ketone, piperitenone (I) is one of the major metabolites of R-(+)-pulegone, a potent hepatotoxin, In the present studies, the metabolic disposition of piperitenone (I) was examined in rats. Piperitenone (I) was administered orally (400 mg/kg of the b. wt./day) to rats for 5 days, The following urinary metabolites were isolated and identified by various spectral analyses: p-cresol (VI), 6,7-dehydromenthofuran (III), p-mentha-1,3,5,8-tetraen-3-ol (IX), p-mentha-1,3, 5-friene-3, 8-diol (X), 5-hydroxypiperitenone (VIII), 7-hydroxypiperitenone (XI), 10-hydroxypiperitenone (XII), and 4-hydroxypiperitenone (VII). Incubation of piperitenone (I) with phenobarbital-induced rat liver microsomes in the presence of NADPH resulted in the formation of five metabolites which have been tentatively identified as metabolites III, VII, VIII, XI, XII, on the basis of gas chromatography retention time and gas chromatography-mass spectrometry analysis. Based on these results, a probable mechanism for the formation of p-cresol from piperitenone (I) via the intermediacy of metabolite III has been proposed.
Resumo:
DNA topoisomerases are ubiquitous group of enzymes altering the topology of DNA by concerted breakage and rejoining of the phosphodiester backbone of DNA. The enzymes are classified based on the pattern of DNA cleavage. Type IA enzymes found in all bacteria nick the DNA and attach themselves covalently to the 5' side of the nick during the first transesterification reaction. Most of the information on this group of enzymes comes from studies with E. coli topoisomerase I and III. Members of type IA group are single subunit Zn++ metalloenzymes recognizing single stranded DNA without high degree of sequence specificity during relaxation reaction of negatively super coiled DNA. So far no inhibitors are known for this group of enzymes inspite of their important role in maintaining homeostasis of DNA topology. Molecular characterization of DNA topoisomerase I from mycobacteria has revealed some of the important features of type IA enzymes hitherto unknown and provide scope for identifying novel inhibitors. The present review describes the recent developments in the area summarizing the distinctive features of mycobacterial topoisomerase I. The enzyme has several properties not shared by either type IA or 113 enzymes with respect to DNA binding, recognition, sequence specificity and interaction pattern. The physiological basis of the unusual features is discussed. The unique properties described would aid in developing the enzyme as a target molecule in pharmaceutical design. In addition, the findings lead to address some fundamental questions on the intracellular role of topoisomerase I in the biology of mycobacteria which are one of the most formidable group of pathogenic organisms.
Resumo:
An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode 11 loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar, The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode IT) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode 11 loading effects has been brittle, indicating catastrophic failure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn-Hilliard (CH) equations for c(A) and c(B), the compositions (in mole fraction) of A and B, respectively. In this work, we present our results on the effect of relative interfacial energies on the temporal evolution of morphologies during spinodal phase separation of an alloy with average composition, c(A) = 1/4, c(B) = 1/4 and c(C) = 1/2. Interfacial energies between the 'A' rich, 'B' rich and 'C' rich phases are varied by changing the gradient energy coefficients. The phases associated with a higher interfacial energy are found to be more rounded than those with lower energy. Further, the kinetic paths (i.e. the history of A-rich, B-rich and C-rich regions in the microstructure) are also affected significantly by the relative interfacial energies of the three phases.
Resumo:
The effect of host glass composition on the optical absorption and fluorescence spectra of Nd3+ has been studied in mixed alkali borate glasses of the type xNa(2)O-(30-x)K2O-69.5B(2)O(3)-0.5Nd(2)O(3) (X = 5,10,15,20 and 25). Various spectroscopic parameters such as Racah (E-1, E-2 and E-3), spin-orbit (xi(4f)) and configuration interaction (alpha, beta) parameters have been calculated. The Judd-Ofelt intensity parameters (Omega(lambda)) have been calculated and the radiative transition probabilities (A(rad)), radiative lifetimes (tau(r)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been obtained for certain excited states of the Nd3+, ion and are discussed with respect to x. From the fluorescence spectra, the effective fluorescence line widths (Deltalambda(eff)) and stimulated emission cross sections (sigma(p)) have been obtained for the three transitions F-4(3/2) --> I-4(9/2), F-4(3/2) --> I-4(11/2) and F-4(3/2) --> I-4(13/2) of Nd3+. The stimulated emission cross section (sigma(p)) values are found to be in the range (2.0-4.8) x 10(-2)0 cm(2) and they are large enough to indicate that the mixed alkali borate glasses could be potential laser host materials.
Resumo:
We present a method to guess the realization of an arbitrarily varying source. Let TU be the type of the unknown state sequence. Our method results in a guessing moment that is within Kn (TU) + O(log n=n) of the minimum attainable guessing moment with full knowledge of source statistics, i.e., with knowledge of the sequence of states sn. The quantity Kn (TU) + O(log n=n) can be interpreted as the penalty one pays for not knowing the sequence of states sn of the source. Kn (TU) by itself is the penalty one pays for guessing with the additional knowledge that the state sequence belongs to type TU. Conversely, given any guessing strategy, for every type TU, there is a state sequence belonging to this type whose corresponding source forces a guessing moment penalty of at least Kn (TU) ¡ O(log n=n).
Resumo:
Conductivity measurements as a function of temperature and partial pressures of SOs, SO2, and O2, and transference experiments indicate that the transport number of Na + ions is unity in Na2SO4-I. A concentration cell based on this electrolyte Pt, O2' + SO2' + SOs'/Na2SO4-I/SOa" + SO~" + O~", Pt produces emf's that are in agreement with those calculated from the Nernst equation when equilibrium is assumed between the gas species at the electrodes. The cell can be used for monitoring the SO#SOs pollution in air, and in combination with an oxygen probe can be used for the determination of SO=/SOs concentrations in coal combustion reactors, for the evaluation of the partial pressure of $2 in coal gasification systems, and for emission control in nonferrous smelters using sulfide ores. The probe is similar to that developed recently by Gauthier et aL (4, 5) using K=SO4 as the electrolyte, but can operate at higher pressures of SO3. Because of the greater polarizing power of the Na+ ion compared to the K + ion, Na2S207 is less stable and can be formed only at a considerably higher pressure of S03 than that required for K~20~.
Resumo:
Two solid state galvanic cells:Pt, Ni + Ni2Si04 + Si02/(Y203)Zr02/Ni + + NiO, Pt (1) and Pt, Ni + NizSiOj + Si02/CaF2/Ni + + NiO, Pt (11) have been employed for the determination of the Gibbs' energy of formation of nickel orthosilicate(Ni2Si04) from nickel oxide and quartz. The emf of cell (I) was reversible and reproducible in the temperature range 925 to 1375K whereas emf of cell (11) drifted with time and changed polarity. From the results of cell (I), the Gibbs' energy of formation of nickel silicate is obtained as,2Ni0 (r.s.) + Si02 (quartz) + Ni2Si04 (olivine)Gibbs' energy of formation of the spinel form of Ni2Si04 is obtained by combining the data for olivine obtained in this study with high pressure data on olivine to spinel transition reported in the literature. The complex time dependence of the emf of cell (11) can be rationalised on the basis of formation of calcium silicates from calcium oxide, generally present as an impurity in the calcium fluoride electrolyte, and silica. The emf of cell (11) is shown to be the function of the activity of calcium oxide at the electrolyte/ electrode interface. The results provide strong evidence against the recent suggestion of mixed anionic conduction in calcium fluoride.
Resumo:
Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic alpha (FIS alpha) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Mathematical models have provided key insights into the pathogenesis of hepatitis C virus (HCV) in vivo, suggested predominant mechanism(s) of drug action, explained confounding patterns of viral load changes in HCV infected patients undergoing therapy, and presented a framework for therapy optimization. In this article, I present an overview of the major advances in the mathematical modeling of HCV dynamics.
Resumo:
Type IA DNA topoisomerases, typically found in bacteria, are essential enzymes that catalyse the DNA relaxation of negative supercoils. DNA gyrase is the only type II topoisomerase that can carry out the opposite reaction (i.e. the introduction of the DNA supercoils). A number of diverse molecules target DNA gyrase. However, inhibitors that arrest the activity of bacterial topoisomerase I at low concentrations remain to be identified. Towards this end, as a proof of principle, monoclonal antibodies that inhibit Mycobacterium smegmatis topoisomerase I have been characterized and the specific inhibition of Mycobacterium smegmatis topoisomerase I by a monoclonal antibody, 2F3G4, at a nanomolar concentration is described. The enzyme-bound monoclonal antibody stimulated the first transesterification reaction leading to enhanced DNA cleavage, without significantly altering the religation activity of the enzyme. The stimulated DNA cleavage resulted in perturbation of the cleavagereligation equilibrium, increasing single-strand nicks and proteinDNA covalent adducts. Monoclonal antibodies with such a mechanism of inhibition can serve as invaluable tools for probing the structure and mechanism of the enzyme, as well as in the design of novel inhibitors that arrest enzyme activity.
Resumo:
In this paper, the synthesis and characterization of some imidazole-based gold-selenolates are described. This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the reactivity of imidazole-based gold(I) selenolates toward nucleophiles such as selenols and phosphines is strikingly different from that of the N,N-dimethylaminobenzylamine-based gold(I) complexes. The presence of Se ... N non-bonded interactions in N,N-dimethylaminobenzylamine-based gold(I) complexes modulates the reactivity of Au(I) centre towards incoming nucleophiles.