916 resultados para Performance levels
Resumo:
One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.
Resumo:
This article presents a tool for the allocation analysis of complex systems of water resources, called AcquaNetXL, developed in the form of spreadsheet in which a model of linear optimization and another nonlinear were incorporated. The AcquaNetXL keeps the concepts and attributes of a decision support system. In other words, it straightens out the communication between the user and the computer, facilitates the understanding and the formulation of the problem, the interpretation of the results and it also gives a support in the process of decision making, turning it into a clear and organized process. The performance of the algorithms used for solving the problems of water allocation was satisfactory especially for the linear model.
Resumo:
The most-used refrigeration system is the vapor-compression system. In this cycle, the compressor is the most complex and expensive component, especially the reciprocating semihermetic type, which is often used in food product conservation. This component is very sensitive to variations in its operating conditions. If these conditions reach unacceptable levels, failures are practically inevitable. Therefore, maintenance actions should be taken in order to maintain good performance of such compressors and to avoid undesirable stops of the system. To achieve such a goal, one has to evaluate the reliability of the system and/or the components. In this case, reliability means the probability that some equipment cannot perform their requested functions for an established time period, under defined operating conditions. One of the tools used to improve component reliability is the failure mode and effect analysis (FMEA). This paper proposes that the methodology of FMEA be used as a tool to evaluate the main failures found in semihermetic reciprocating compressors used in refrigeration systems. Based on the results, some suggestions for maintenance are addressed.
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
Nowadays, there is a trend for industry reorganization in geographically dispersed systems, carried out of their activities with autonomy. These systems must maintain coordinated relationship among themselves in order to assure an expected performance of the overall system. Thus, a manufacturing system is proposed, based on ""web services"" to assure an effective orchestration of services in order to produce final products. In addition, it considers special functions, such as teleoperation and remote monitoring, users` online request, among others. Considering the proposed system as discrete event system (DES), techniques derived from Petri nets (PN), including the Production Flow Schema (PFS), can be used in a PFS/PN approach for modeling. The system is approached in different levels of abstraction: a conceptual model which is obtained by applying the PFS technique and a functional model which is obtained by applying PN. Finally, a particular example of the proposed system is presented.
Resumo:
The therapeutic ultrasound (US) is one of the resources mostly used by physiotherapists; however the use of uncalibrated equipments results in inefficient or even harmful therapies to the patient. In this direction, the objective of this study was to evaluate the performance and the procedures of utilization and maintenance of US in use in clinics and Physical-therapy offices. A questionnaire with questions related to the procedures applied in service during the use of therapeutic ultrasound was applied to physiotherapists. The performance of 31 equipments of 6 different brands and 13 different models was evaluated according to the IEC 61689 norm. The parameters measured were: acoustic power; effective radiating area (AER); non-uniformity ratio of the beam (RBN); maximum effective intensity; acoustic frequency of operation, modulation factor and wave form on pulsate mode. As for the questionnaires, it was evident that the professionals are not concerned about the calibration of the equipment. The results demonstrated that only 32.3% of the equipments were in accordance with the norms for the variables power and effective radiation area. The frequency analysis indicated that 20% of the 3 MHz transducers and 12.5% of the 1 MHz contemplated the norms. In the pulsate mode, 12.7% presented relation rest/duration inside allowed limits. A great variation of the ultrasonic field was observed on the obtained images, which presented beams not centered, sometimes with bifurcation of its apex. The results allow concluding that, although used in therapeutic sessions with the population, none of the equipments presents all the analyzed variables inside technical norms. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
High-density polyethylene resins have increasingly been used in the production of pipes for water- and gas-pressurized distribution systems and are expected to remain in service for several years, but they eventually fail prematurely by creep fracture. Usual standard methods used to rank resins in terms of their resistance to fracture are expensive and non-practical for quality control purposes, justifying the search for alternative methods. Essential work of fracture (EWF) method provides a relatively simple procedure to characterize the fracture behavior of ductile polymers, such as polyethylene resins. In the present work, six resins were analyzed using the EWF methodology. The results show that the plastic work dissipation factor, beta w(p), is the most reliable parameter to evaluate the performance. Attention must be given to specimen preparation that might result in excessive dispersion in the results, especially for the essential work of fracture w(e).
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents an alternative way to formulate the stable Model Predictive Control (MPC) optimization problem that allows the enlargement of the domain of attraction, while preserving the controller performance. Based on the dual MPC that uses the null local controller, it proposed the inclusion of an appropriate set of slacked terminal constraints into the control problem. As a result, the domain of attraction is unlimited for the stable modes of the system, and the largest possible for the non-stable modes. Although this controller does not achieve local optimality, simulations show that the input and output performances may be comparable to the ones obtained with the dual MPC that uses the LQR as a local controller. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A solar energy powered failing film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO(2), making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO(2) from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector. and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A gap has been identified in the literature on the diagnosis and monitoring of the degree of strategic alignment. The main objective of this article is to diagnose and analyze the strategic alignment profile using the alignment diagnostic profile (ADP) tool, which enables organizations to show visually their degree of strategic alignment. The methodological approach adopted is multiple-case studies, which were conducted at five organizations in the medical diagnostics sector. The results indicate that the ADP enables organizations to understand the steps required to improve their level of alignment and to identify and locate gaps and conflicts.
Resumo:
We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique.
Resumo:
This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-K dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work focuses on the impact of the source and drain Selective Epitaxial Growth (SEG) on the performance of uniaxially strained MuGFETs. With the channel length reduction, the normalized transconductance (gm.L./W) of unstressed MuGFETs decreases due to the series resistance and short channel effects (SCE), while the presence of uniaxial strain improves the gm. The competition between the series resistance (R(s)) and the uniaxial strain results in a normalized gm maximum point for a specific channel length. Since the SEG structure influences both R(s) and the strain in the channel, this work studies from room down to low temperature how these effects influence the performance of the triple-gate FETs. For lower temperatures, the strain-induced mobility enhancement increases and leads to a shift in the maximum point towards shorter channel lengths for devices without SEG. This shift is not observed for devices with SEG where the strain level is much lower. At 150 K the gm behavior of short channel strained devices with SEG is similar to the non SEC ones due to the better gm temperature enhancement for devices without SEG caused by the strain. For lower temperatures SEG structure is not useful anymore. (C) 2011 Elsevier Ltd. All rights reserved.