999 resultados para Peixe - Fibra bruta
Resumo:
This study aims to compare the thermal performance of tiles made from recycled material (waste packaging cardboard with aluminized film) with the tiles of fiber and bitumen, fiber cement and red ceramic with the aim of verifying the suitability of tile to be used in hot and humid climate of low latitude. The samples were selected according to the availability from Natal - RN market, as they are sold to the consumers. The methodology was based on studies that used experimental apparatus composed of thermal chambers heated by banks of incandescent bulbs, to analyze the thermal performance of materials. The tiles in the study were submitted to analysis of thermal performance, thermophysical properties and absorptance, using chambers of thermal performance, measuring the thermophysical properties and portable spectrometer, respectively. Comparative analysis of thermal performance between two samples of the recycled material with dimple sizes and different amounts of aluminum were made, in order to verify, if these characteristics had some interference on the thermal performance of them; the results showed no significant performance differences between the samples. The data obtained in chambers of thermal performance and confirmed by statistical analysis, showed, that the tile of recycled material have similar thermal performance to the tile of fiber cement. In addition to these tests was carried out the automatic monitoring of a building covered with tiles of recycled material, to verify its thermal performance in a real situation. The results showed that recycled shingles must be used with technical criteria similar to those used for fiber cement tiles, with regard to the heat gain into the building. Within these criteria should be taken into account local characteristics, especially in regions with hot and humid climate, and its use must be associated, according to the literature, to elements of thermal insulation and use of passive techniques such as vented attics, ceilings and right foot higher
Reguladores da expressão do gene da proteía Gla da matriz (MGP) numa linha celular derivada de peixe
Resumo:
Dissertação de mest. em Biotecnologia, Faculdade de Engenharia de Recursos Naturais, Univ. do Algarve, 2004
Resumo:
The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades
Resumo:
The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA
Resumo:
Mestrado em Gestão
Resumo:
2009
Resumo:
Biological aspects of the blackmouth bass Synagrops bellus from the outer shelf and upper slope along the coast of São Paulo, southeastern Brazil, are presented. The species represented about 71.6% and 9.7% in number of the total catch performed by balloom trawl in the isobaths of 300m and 500m respectively. Body sizes of 266 individuals ranged between 130 and 265mm total length, with sex ratio of 55.9% males, and 44.1% females, where most individuals were in maturation stage. Twenty two food items were found, pointing out Myctophidae fishes, Penaeidea and Caridea shrimps, Brachyuran megalopae, Enoploteuthidae and Cranchiidae cephalopods, pteropods and tunicates. The intestinal coefficient increases as the body size increase, and the number of gill rakers ranged between 16 and 17. Length-weight relationship was WT = 6.0 x 10-6 x TL3.12, r2 = 0.9495. Synagrops bellus is an important link between zooplankton and micronekton, and demersal and pelagic predators in the outer shelf and upper slope in southwestern Brazilian coast.
Resumo:
55 p.
Resumo:
84 p.
Resumo:
The present work describes myxozoans found in Cyphocharax nagelli (Characiformes: Curimatinae) commonly called saguiru collected from Rio do Peixe Reservoir, Sao Jose do Rio Pardo, São Paulo, Brazil. From a total of 38 examined fish, 24 were infected with Henneguya garavelli n. sp. (63% prevalence) and two with Myxobolus peculiaris n. sp. (5% prevalence) in the gills. Spores were studied by staining and fresh spores were observed by differential interference contrast optics. Henneguya garavelli n. sp. differs from Henneguya iheringi , Henneguya occulta, Henneguya cesarpintoi, Henneguya santae, Henneguya pisciforme, Henneguya amazonica, Henneguya striolata, Henneguya leporinicola and Henneguya chydadea in spore length and from Henneguya travassosi, Henneguya adherens, Henneguya malabarica, Henneguya piaractus and also Henneguya chydadea in polar capsule length and tail length. Myxobolus peculiaris n. sp. was very different when compared to other species of Myxobolus in its morphology and the biggest size of spore body. The authors present tables with comparative measurements of Brazilian myxozoan parasites. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Os produtos obtidos da fermentação de pescados marinhos frescos registrados como fertilizantes orgânicos são ricos em nutrientes, possuem em sua composição quitina e quitosana, podendo-se constituir em um produto alternativo adequado para o controle de fitopatógenos. O objetivo deste trabalho foi estudar o potencial de um hidrolisado de peixe em controlar o oídio em abobrinha, F. oxysporum f. sp. lycopersici raça 3 em tomate e Pythium spp. em pepino. Nesse sentido, um fertilizante orgânico obtido da fermentação de resíduos de pescados marinhos frescos foi pulverizado semanalmente nas plantas de abobrinha, com o auxílio de um compressor de pintura 10 1b/pol2 m a 0%, 0,5%, 1%, 2%, 3%, 4%, 5% e 10% (v/v) para o controle do oídio. Este mesmo fertilizante foi incorporado ao substrato nas concentrações de 0%, 5%, 10%, 20%, 30%, 40%, 50% e 100% (por volume de água necessária para atingir a capacidade de campo), em experimento realizado dentro e fora de casa de vegetação. Outros experimentos realizados avaliaram a eficiência do hidrolisado de peixe no controle do tombamento causado por Pythium spp., em pepino e a murcha-de-fusário causada por Fusarium oxysporum f. sp. lycopersici raça 3, em tomate. Os experimentos foram realizados em casa de vegetação e o delineamento experimental foi inteiramente casualizado, com dez repetições por tratamento. Para o pepino, foi utilizada a técnica de estimular a população original do solo com aveia. Assim, o hidrolisado de peixe foi incorporado ao solo dez dias após a mistura com aveia, em concentrações de 0%, 5%, 10%, 20%, 30%, 40%, 50% e 100% do volume de água, para atingir a capacidade de campo do solo e com incubação aberta e fechada. Após dez dias de incubação, 200 ml da mistura foram adicionados ao colo das plantas de pepino no estádio de 2° folhas verdadeiras. A avaliação foi realizada após cinco dias, determinando-se o número de plântulas tombadas. O hidrolisado de peixe, tanto pulverizado na folhas quanto incorporado no substrato, não controlou o oídio da abobrinha. Por outro lado, pode ser observado o efeito do hidrolisado de peixe no desenvolvimento das plantas e no desenvolvimento de Trichoderma no substrato. A partir da concentração de 30%, não houve tombamento de plantas. Por outro lado, o tombamento foi de 100% para os tratamentos com 0 e 5% do fertilizante. Para o experimento do Fusarium, foram utilizados três isolados da raça 3 de Fusarium oxysporum f. sp. lycopersici (isolados 145, 146 e 149). Após a infestação, o substrato foi incubado por quinze dias com o hidrolisado de peixe e foi incorporado ao substrato nas seguintes concentrações: 0%, 5%, 10%, 20%, 30%, 40% e 50% volume de água necessária para atingir a capacidade de campo. Uma muda de tomate cultivar Santa Clara suscetível à raça 3 com 30 dias de idade, foi transferida para cada vaso. A severidade da doença foi avaliada após 40 dias, por meio de escala de notas para escurecimento vascular e sintomas externos. De modo geral, todas as doses do hidrolisado de peixe reduziram, significativamente, a severidade da doença.
Resumo:
2006
Resumo:
This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.
Resumo:
Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.