983 resultados para Particle formation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe/AlOOH gels calcined and reduced at different temperatures have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, and electron microscopy in order to obtain information on the nature of the iron species formed as well as the various reduction processes. Calcination at or below 1070 K mainly gives reducible Fe3+ while calcination at higher temperatures gives substitutional Fe3+ in the form of Al2-xFexO3. The Fe3+ species in the calcined samples are, by and large, present in the form of small superparamagnetic particles. Crystallization of Al2O3 from the gels is catalyzed by Fe2O3 as well as FeAl2O4. Fe (20 wt. %)/AlOOH gels calcined at or below 870 K give FeAl2O4 when reduced in hydrogen at 1070 K or lower and a ferromagnetic Fe0-Al2O3 composite (with the metallic Fe particles >100 angstrom) when reduced at 1270 K. Samples calcined at 1220 K or higher give the Fe0-Al2O3 composite when reduced in the 870-12,70 K range, but a substantial proportion of Fe3+ remains unreduced in the form of Al2-xFexO3, showing thereby the extraordinary stability of substitutional Fe3+ to reduction even at high temperatures. Besides the ferromagnetic Fe0-Al2O3 composite, high-temperature reduction of Al2-xFexO3 yields a small proportion of superparamagnetic Fe0-Al2O3 wherein small metallic particles (<100 angstrom) are embedded in the ceramic matrix. In order to preferentially obtain the Fe0-Al2O3 composite on reduction, Fe/AlOOH gels should be calcined at low temperatures (less-than-or-equal-to 1100 K); high-temperature calcination results in Al2-xFexO3. Several modes of formation of FeAl2O4 are found possible during reduction of the gels, but a novel one is that involving the reaction, 2Fe3+ + Fe0 --> 3Fe2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusually long (>14 cm) crystalline needles grow from 4-(3-bromopropyloxy)salicylaldehyde 1 presumably as a consequence of Br ... Br interactions; the powdered form of 1 shows one order of magnitude greater SHG activity realtive to urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photorearrangement of benzyl phenyl ethers and methyl phenoxyacetates was investigated in methanol and in complexes with cyclodextrin in both the solid state and aqueous solutions. Irradiation in cyclodextrin media leads to a large change in product distribution with a very significant ortho selectivity different from that found in methanol where the reaction is non-selective. For meta-substituted ethers and phenoxyacetates, an impressive regioselectivity between the two ortho-rearranged isomers is observed and this is significantly enhanced by increasing the substituent chain length which acts as a spacer to induce a tight fit between the host and the guest. The observed results are rationalized on the basis of specific orientations of the unsubstituted and meta-substituted ethers and phenoxyacetates in the cyclodextrin cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potentials oi carbon associated with two three-phase fields in the system U-Mo-C were measured by using the methane-hydrogen gas equilibration technique in the temperature range 973 to 1173K. The technique was validated by measuring the standard Gibbs energy of formation of Mo2C. From the experimentally measured values of the chemical potential of carbon in the ternary phase fields UC+Mo+UMoC1.7 and UC+UMoC1.7+UMoC2 and data for UC from the literature, the Gibbs energies of formation of the two ternary carbides were derived:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304L, 304 and 304 as-cast, during hot working has been studied. Compression and torsion tests were conducted in the temperature range 1100 to 1250 degrees C and strain rate range 0.001 to 100 s(-1) on these materials, Ferrite formation occurs during deformation at temperatures above 1150 degrees C and strain rates above 10 s(-1), in stainless steel type AISI 304L and 304. The tendency for the formation of ferrite is more in as-cast 304 than in wrought 304, In as-cast 304 the ferrite forms at lower temperatures and strain rates, The tendency for the ferrite formation is more in torsion than in compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the mechanical alloying behaviour of elemental aluminium with diamond cubic elements Ge and Si. A metastable crystalline phase with rhombohedral crystal structure forms in Al-70 Ge-30 and Al-60 Ge-40 alloy compositions. The phase always coexists with elemental constituents and decomposes over a broad temperature range. No such metastable phase could be observed in the Al-Si system. We also report X-ray diffractometry and differential scanning calorimetry results suggestive of amorphization. Finally a comparison was made of the present result with that obtained in rapid solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and computer simulation studies of orientational relaxation in dense molecular liquids are presented. The emphasis of the study is to understand the effects of collective orientational relaxation on the single-particle orientational dynamics. The theoretical analysis is based on a recently developed molecular hydrodynamic theory which allows a self-consistent description of both the collective and the single-particle orientational relaxation. The molecular hydrodynamic theory can be used to derive a relation between the memory function for the collective orientational correlation function and the frequency-dependent dielectric function. A novel feature of the present work is the demonstration that this collective memory function is significantly different from the single-particle rotational friction. However, a microscopic expression for the single-particle rotational friction can be derived from the molecular hydrodynamic theory where the collective memory function can be used to obtain the single-particle orientational friction. This procedure allows, us to calculate the single-particle orientational correlation function near the alpha-beta transition in the supercooled liquid. The calculated correlation function shows an interesting bimodal decay below the bifurcation temperature as the glass transition is approached from above. Brownian dynamics simulations have been carried out to check the validity of the above procedure of translating the memory function from the dielectric relaxation data. We have also investigated the following two issues important in understanding the orientational relaxation in slow liquids. First, we present an analysis of the ''orientational caging'' of translational motion. The value of the translational friction is found to be altered significantly by the orientational caging. Second, we address the question of the rank dependence of the dielectric friction using both simulation and the molecular hydrodynamic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fine-particle NASICON family of materials, MZr2P3O12(where M = Na, K, ½Ca and ¼Zr) and NbZrP3O12, have been prepared by the combustion of aqueous heterogeneous mixtures of stoichiometric amounts of metal nitrate, zirconyl nitrate, niobium phosphate, diammonium hydrogen phosphate, ammonium perchlorate and carbohydrazide (CH) at 400 °C. The formation of NASICON materials was confirmed by powder X-ray diffraction (XRD), IR, solid-state (31P) NMR spectroscopy and thermal expansion coefficient measurements. The combustion-synthesized NASICON powders have an average agglomerate size of 9�13 µm with a specific surface area varying from 8 to 28 m2 g�1. The powders pelletized and sintered in the range 1100�1200 °C for 5 h achieved 95�97% theoretical density and showed fine-grain microstructure. The coefficient of thermal expansion of a sintered compact was measured up to 500 °C and ranged from �1.5 × 10�6°C�1 to 1.0 × 10�6°C�1 depending on the composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he ortho methoxycarbonyl substituent constitutes a sole exception in the ring closure reactions of ortho substituted aryl azides, as it provides no rate acceleration to this reaction. Pyrolysis of ''azido-meta-hemipinate'', an aryl azide containing such a substituent, led us to the title compound, a new azepinylidenepyridylacetic ester, whose structure has been established unambiguously by a single crystal X-ray diffraction study. This is the first report of a reaction involving both a ring expansion to an azaheptafulvalene and a ring extrusion to a pyridyl ring residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures are widely used for many applications and hence it Is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple dosed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.