925 resultados para Particle Identification Method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chinese Loess Plateau red clay sequences display a continuous alternation of sedimentary cycles that represent recurrent climatic fluctuations from 2.58 Ma to the Miocene. Deciphering such a record can provide us with vital information on global and Asian climatic variations. Lack of fossils and failure of absolute dating methods made magnetostratigraphy a leading method to build age models for the red clay sequences. Here we test the magnetostratigraphic age model against cyclostratigraphy. For this purpose we investigate the climate cyclicity recorded in magnetic susceptibility and sedimentary grain size in a red clay section previously dated 11Myr old with magnetostratigraphy alone. Magnetostratigraphy dating based on only visual correlation could potentially lead to erroneous age model. In this study the correlation is executed through the iteration procedure until it is supported by cyclostratigraphy; i.e., Milankovitch cycles are resolved in the best possible manner. Our new age model provides an age of 5.2Ma for the Shilou profile. Based on the new age model, wavelet analysis reveals the well-preserved 400 kyr and possible 100 kyr eccentricity cycles on the eastern Chinese Loess Plateau. Further, paleomonsoon evolution during 2.58-5.2Ma is reconstructed and divided into three intervals (2.58-3.6Ma, 3.6-4.5Ma, and 4.5-5.2Ma). The upper part, the youngest stage, is characterized by a relatively intensified summer monsoon, the middle stage reflects an intensification of the winter monsoon and aridification in Asia, and the earliest stage indicates that summer and winter monsoon cycles may have rapidly altered. The use of cyclostratigraphy along withmagnetostratigraphy gives us an effectivemethod of dating red clay sequences, and our results imply that many presently published age models for the red clay deposits should be perhaps re-evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mixed sediment beds, erosion resistance can change relative to that of beds composed of a uniform sediment because of varying textural and/or other grain-size parameters, with effects on pore water flow that are difficult to quantify by means of analogue techniques. To overcome this difficulty, a three-dimensional numerical model was developed using a finite difference method (FDM) flow model coupled with a distinct element method (DEM) particle model. The main aim was to investigate, at a high spatial resolution, the physical processes occurring during the initiation of motion of single grains at the sediment-water interface and in the shallow subsurface of simplified sediment beds under different flow velocities. Increasing proportions of very fine sand (D50=0.08 mm) were mixed into a coarse sand matrix (D50=0.6 mm) to simulate mixed sediment beds, starting with a pure coarse sand bed in experiment 1 (0 wt% fines), and proceeding through experiment 2 (6.5 wt% fines), experiment 3 (10.5 wt% fines), and experiment 4 (28.7 wt% fines). All mixed beds were tested for their erosion behavior at predefined flow velocities varying in the range of U 1-5=10-30 cm/s. The experiments show that, with increasing fine content, the smaller particles increasingly fill the spaces between the larger particles. As a consequence, pore water inflow into the sediment is increasingly blocked, i.e., there is a decrease in pore water flow velocity and, hence, in the flow momentum available to entrain particles. These findings are portrayed in a new conceptual model of enhanced sediment bed stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock. Note to Practitioners—This paper presents an algorithm to identify large boulders in a pile of broken rock as a step towards an autonomous mining dig planner. In mining, piles of broken rock can contain large fragments that may need to be specially handled. To assess rock piles for excavation, we make use of a TOF camera that does not rely on external lighting to generate a point cloud of the rock pile. We then segment large boulders from its surface by using a novel feature descriptor and distinguish between real and false boulder candidates. Preliminary field experiments show promising results with the algorithm performing nearly as well as human test subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service.

This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses.

The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this R&D work is to simulate particle beam optics in CV-28 Cyclotron of Instituto de Engenharia Nuclear – IEN/CNEN, as a support for improvements or optimization of this particle accelerator. Besides 2D magnetostatic field computation results, the authors present an alternative method for charged particle trajectories computation in electrostatic or magnetostatic fields. This task is approached by analytical computation of trajectories, by parts, considering constant fields within each finite element. This method has some advantages over numerical integration ones: numerical miscomputation of trajectories is avoided; stability problem is also avoided, for the magnetostatic field case. Some examples are presented, including positive ion extraction from cyclotrons with strip-foil. This latter technique is an interesting alternative for upgrading positive ion cyclotrons, such as CV-28 Cyclotron. The particle trajectory computation method presented in this work is of interest not only for cyclotrons, but for accelerator and related technology, in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a new perspective, this paper clarifies the internal and external factors affecting the carbon assets on the basis of induction of the connotation. It takes the enterprise business as the source of carbon assets, and makes an automotive group as an example, and establishes a network of its passenger car business activities based on the topological structure. This paper provides a method for identifying carbon assets from the relationship of business activities, and explains the formation mechanism of different assets from which it refines its network, and puts forward a reference to re-identify enterprise carbon assets from the perspective of development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports an alternative method for single non-relativistic charged particle trajectory computation in 2D electrostatic or magnetostatic fields. This task is approached by analytical computation of particle trajectory, by parts, considering the constant fields within each finite element. This method has some advantages over numerical integration ones: numerical miscomputation of trajectories, and stability problems can be avoided. Among the examples presented in this paper, an interesting alternative approach for positive ion extraction from cyclotrons is shown, using strip-foils. Other particle optics devices can benefit of a method such the one proposed in this paper, as beam bending devices, spectrometers, among others. This method can be extended for particle trajectory computation in 3D domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) is the group of techniques that use antibodies as specific reagents to identify and demonstrate several cell and tissue components that are antigens. This linking allows locating and identifying the in situ presence of various substances by means of color that is associated with the formed antigen-antibody complexes. The practical value of this biotechnology area, widely used in Pathology and Oncology, in diagnostic, prognostic, theranostic and research context, results from the possibility of combining a colour marker with an antibody without causing any damage to specific binding established between antibody and antigen. This provides the microscopic observation of the target locations where the antibody and hence the antigen are present. IHC is presented as a powerful means for identification of several cellular and tissue structures that can be associated with pathologies, and of the consequences, at functional and morphological level, of these same elements action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deterministic model of tuberculosis in Cameroon is designed and analyzed with respect to its transmission dynamics. The model includes lack of access to treatment and weak diagnosis capacity as well as both frequency-and density-dependent transmissions. It is shown that the model is mathematically well-posed and epidemiologically reasonable. Solutions are non-negative and bounded whenever the initial values are non-negative. A sensitivity analysis of model parameters is performed and the most sensitive ones are identified by means of a state-of-the-art Gauss-Newton method. In particular, parameters representing the proportion of individuals having access to medical facilities are seen to have a large impact on the dynamics of the disease. The model predicts that a gradual increase of these parameters could significantly reduce the disease burden on the population within the next 15 years.