926 resultados para Pareto-optimal solutions
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Refluxing carbon nanotubes in H2SO4-HNO3 results in a clear colourless solution which on removal of the solvent gives a white solid containing functionalised nanotubes; neutralization of the acidic solution results in the precipitation of a brown solid containing nanotubes
Resumo:
We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.
Resumo:
The pyroelectric and electrostrictive properties of lead zinc niobate-lead titanate-barium titanate (PZN-BT-PT) ceramic solid solution were investigated. These properties of the (1 - x)PZN.xBT series were qualitatively explained with a composition fluctuation model. The pyroelectric depolarization temperatures of (1 - x - y)PZN.xBT.yPT ceramics were utilized to select compositions for room-temperature electrostrictive applications. Among them, 0.85PZN.0.10BT.0.05PT ceramic with Q11 = 0.018 m4/C2, Q12 = -0.0085 m4/C2, S2 at 25 kV/cm = -6.1 x 10(-4), T(max) = 75-degrees-C at 1 kHz, and T(t) = 27-degrees-C shows optimum properties for micropositioner applications.
Resumo:
The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.
Resumo:
The results of an NMR study of the interaction of quinazoline with iodine in the nematic phase indicate the formation of at least two different types of charge-transfer complexes. Significant changes in the molecular geometry of the quinazoline moiety were observed as a result of complexation with iodine. Detailed information on the formation of the charge-transfer complexes was derived from the changes in the molecular structure, order parameters and chemical shifts as functions of iodine concentration. The observed changes in the order parameters are interpreted in terms of bond interaction tensors.
Resumo:
We combine multiple scattering and renormalization group methods to calculate the leading order dimensionless virial coefficient k(s) for the friction coefficient of dilute polymer solutions under conditions where the osmotic second virial coefficient vanishes (i.e., at the theta point T-theta). Our calculations are formulated in terms of coupled kinetic equations for the polymer and solvent, in which the polymers are modeled as continuous chains whose configurations evolve under the action of random forces in, the velocity field of the solvent. To lowest order in epsilon=4-d, we find that k(s) = 1.06. This result compares satisfactorily with existing experimental estimates of k(s), which are in the range 0.7-0.8. It is also in good agreement with other theoretical results on chains and suspensions at T-theta. Our calculated k(s) is also found to be identical to the leading order virial coefficient of the tracer friction coefficient at the theta point. We discuss possible reasons for the difficulties encountered when attempting to evaluate k(s) by extrapolating prior renormalization group calculations from semidilute concentrations to the infinitely dilute limit. (C) 1996 American Institute of Physics.
Resumo:
We consider discrete-time versions of two classical problems in the optimal control of admission to a queueing system: i) optimal routing of arrivals to two parallel queues and ii) optimal acceptance/rejection of arrivals to a single queue. We extend the formulation of these problems to permit a k step delay in the observation of the queue lengths by the controller. For geometric inter-arrival times and geometric service times the problems are formulated as controlled Markov chains with expected total discounted cost as the minimization objective. For problem i) we show that when k = 1, the optimal policy is to allocate an arrival to the queue with the smaller expected queue length (JSEQ: Join the Shortest Expected Queue). We also show that for this problem, for k greater than or equal to 2, JSEQ is not optimal. For problem ii) we show that when k = 1, the optimal policy is a threshold policy. There are, however, two thresholds m(0) greater than or equal to m(1) > 0, such that mo is used when the previous action was to reject, and mi is used when the previous action was to accept.
Role of Li+ ions in corrosion behaviour of 8090 Al-Li alloy and aluminium in pH 12 aqueous solutions
Resumo:
The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.
Resumo:
Analytical solutions of the generalized Bloch equations for an arbitrary set of initial values of the x, y, and z magnetization components are given in the rotating frame. The solutions involve the decoupling of the three coupled differential equations such that a third-order differential equation in each magnetization variable is obtained. In contrast to the previously reported solutions given by Torrey, the present attempt paves the way for more direct physical insight into the behavior of each magnetization component. Special cases have been discussed that highlight the utility of the general solutions. Representative trajectories of magnetization components are given, illustrating their behavior with respect to the values of off-resonance and initial conditions. (C) 1995 Academic Press, Inc.
Resumo:
This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable Of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study. Twelve dendrimers within first, second, and third generations, having ethyl, n-propyl, n-butyl, and n-pentyl groups as the linkers and hydroxyl groups at peripheries in each generation, were synthesized. Encapsulation of pyrene and coumarins by aqueous basic solutions of dendrimers were monitored-by UV-vis and fluorescence spectroscopies, which showed that a lower generation dendrimer with an optimal alkyl linker presented better encapsulation abilities than a higher generation dendrimer. Norrish type I photoreaction of dibenzyl ketone was carried out within the above: series of dendrimers to probe their abilities to hold guests and reactive inthermediate radical pairs within themselves. The extent of cage effect from the series of third generation dendrimers was observed to be higher with dendrimers having an n-pentyl group as the linker.
Resumo:
Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, X = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x Image .8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.