944 resultados para PROMOTES PROLIFERATION
Resumo:
Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons.
Resumo:
Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.
Resumo:
Normally nonmetastatic murine sis-transformed BALB/c 3T3 cells, transfected with human CD44s gene (hCD44s), acquire spontaneous metastatic capacity to the lung. The mechanism(s) of this facilitated micrometastasis was analyzed in an experimental metastasis model. Human CD44s overexpression promoted the earliest stages severalfold (initial implantation and subsequent stabilization of tumor cells) but was irrelevant for later stages (subsequent outgrowth) of lung experimental micrometastasis. By injecting mixed populations of parental (nonmetastatic) and CD44s-transfected cells, it was shown that cell–cell adhesion between tumor and parental cells was not promoted by hCD44s but that promotion of cell–cell adhesion to lung endothelium or specifically between transfected cells (via hyaluronan) are likely mechanisms. Results obtained with hCD44s-negative primary tumor cells and hCD44s-positive or -negative variants of lung micrometastatic cells (after s.c. injection of transfectants) confirmed the importance of CD44s overexpression for early but not late stages of experimental lung metastasis. Therefore, CD44s represents a metastasis-facilitating molecule that is irrelevant for primary tumor outgrowth but that promotes micrometastasis to the lungs at the very earliest stages.
Resumo:
Peptide growth factors were isolated from conditioned medium derived from rice (Oryza sativa L.) suspension cultures and identified to be a sulfated pentapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH] and its C-terminal-truncated tetrapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH]. These structures were identical to the phytosulfokines originally found in asparagus (Asparagus officinalis L.) mesophyll cultures. The pentapeptide [phytosulfokine-α (PSK-α)] very strongly stimulated colony formation of rice protoplasts at concentrations above 10−8 M, indicating a similar mode of action in rice of phytosulfokines. Binding assays using 35S-labeled PSK-α demonstrated the existence of both high- and low-affinity specific saturable binding sites on the surface of rice cells in suspension. Analysis of [35S]PSK-α binding in differential centrifugation fractions suggested association of the binding with a plasma membrane-enriched fraction. The apparent Kd values for [35S]PSK-α binding were found to be 1 × 10−9 M for the high-affinity type and 1 × 10−7 M for the low-affinity type, with maximal numbers of binding sites of 1 × 104 sites per cell and 1 × 105 sites per cell, respectively. Competition studies with [35S]PSK-α and several synthetic PSK-α analogs demonstrated that only peptides that possesses mitogenic activity can effectively displace the radioligand. These results suggest that a signal transduction pathway mediated by peptide factors is involved in plant cell proliferation.
Resumo:
The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.
Resumo:
As part of our attempts at understanding fundamental principles that underlie the generation of nondividing terminally differentiated progeny from dividing precursor cells, we have developed approaches to a quantitative analysis of proliferation and differentiation of oligodendrocyte type 2 astrocyte (O-2A) progenitor cells at the clonal level. Owing to extensive previous studies of clonal differentiation in this lineage, O-2A progenitor cells represent an excellent system for such an analysis. Previous studies have resulted in two competing hypotheses; one of them suggests that progenitor cell differentiation is symmetric, the other hypothesis introduces an asymmetric process of differentiation. We propose a general model that incorporates both such extreme hypotheses as special cases. Our analysis of experimental data has shown, however, that neither of these extreme cases completely explains the observed kinetics of O-2A progenitor cell proliferation and oligodendrocyte generation in vitro. Instead, our results indicate that O-2A progenitor cells become competent for differentiation after they complete a certain number of critical mitotic cycles that represent a period of symmetric development. This number varies from clone to clone and may be thought of as a random variable; its probability distribution was estimated from experimental data. Those O-2A cells that have undergone the critical divisions then may differentiate into an oligodendrocyte in each of the subsequent mitotic cycles with a certain probability, thereby exhibiting the asymmetric type of differentiation.
Resumo:
Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.
Resumo:
Previously, we showed that the addition of human erythrocyte glycosphingolipids (GSLs) to nonhuman CD4+ or GSL-depleted human CD4+ cells rendered those cells susceptible to HIV-1 envelope glycoprotein-mediated cell fusion. Individual components in the GSL mixture were isolated by fractionation on a silica-gel column and incorporated into the membranes of CD4+ cells. GSL-supplemented target cells were then examined for their ability to fuse with TF228 cells expressing HIV-1LAI envelope glycoprotein. We found that one GSL fraction, fraction 3, exhibited the highest recovery of fusion after incorporation into CD4+ nonhuman and GSL-depleted HeLa-CD4 cells and that fraction 3 contained a single GSL fraction. Fraction 3 was characterized by MS, NMR spectroscopy, enzymatic analysis, and immunostaining with an antiglobotriaosylceramide (Gb3) antibody and was found to be Gal(α1→4)Gal(β1→4)Glc-Cer (Gb3). The addition of fraction 3 or Gb3 to GSL-depleted HeLa-CD4 cells recovered fusion, but the addition of galactosylceramide, glucosylceramide, the monosialoganglioside, GM3, lactosylceramide, globoside, the disialoganglioside, GD3, or α-galactosidase A-digested fraction 3 had no effect. Our findings show that the neutral GSL, Gb3, is required for CD4/CXCR4-dependent HIV-1 fusion.
Resumo:
The frizzled gene family of putative Wnt receptors encodes proteins that have a seven-transmembrane-spanning motif characteristic of G protein-linked receptors, though no loss-of-function studies have demonstrated a requirement for G proteins for Frizzled signaling. We engineered a Frizzled-2 chimera responsive to β-adrenergic agonist by using the ligand-binding domains of the β2-adrenergic receptor. The expectation was that the chimera would be sensitive both to drug-mediated activation and blockade, thereby circumventing the problem of purifying soluble and active Wnt ligand to activate Frizzled. Expression of the chimera in zebrafish embryos demonstrated isoproterenol (ISO)-stimulated, propranolol-sensitive calcium transients, thereby confirming the β-adrenergic nature of Wnt signaling by the chimeric receptor. Because F9 embryonic teratocarcinoma cells form primitive endoderm after stable transfection of Frizzled-2 chimera and stimulation with ISO, they were subject to depletion of G protein subunits. ISO stimulation of endoderm formation of F9 stem cells expressing the chimeric receptor was blocked by pertussis toxin and by oligodeoxynucleotide antisense to Gαo, Gαt2, and Gβ2. Our results demonstrate the requirement of two pertussis toxin-sensitive G proteins, Gαo and Gαt, for signaling by the Frizzled-2 receptor.
Resumo:
rRNA synthesis by RNA polymerase I requires both the promoter selectivity factor 1, which is composed of TATA binding protein (TBP) and three TBP-associated factors, and the activator upstream binding factor (UBF). Whereas there is strong evidence implicating a role for phosphorylation of UBF in the control of growth-induced increases in rRNA transcription, the mechanism of this effect is not known. Results of immunoprecipitation studies with TBP antibodies showed increased recovery of phosphorylated UBF from growth-stimulated smooth muscle cells. Moreover, using an immobilized protein-binding assay, we found that phosphorylation of UBF in vivo in response to stimulation with different growth factors or in vitro with smooth muscle cell nuclear extract increased its binding to TBP. Finally, we demonstrated that UBF–TBP binding depended on the C-terminal ‘acidic tail’ of UBF that was hyperphosphorylated at multiple serine sites after growth factor stimulation. Results of these studies suggest that phosphorylation of UBF and subsequent binding to TBP represent a key regulatory step in control of growth-induced increases in rRNA synthesis.
Resumo:
P75/AIRM1 is a recently identified surface molecule that belongs to the sialoadhesin family and displays homology with the myeloid cell antigen CD33. In lymphoid cells, p75/AIRM1 is confined to natural killer cells and mediates inhibition of their cytolytic activity. In this study, we show that p75/AIRM1 is also expressed by cells of the myelomonocytic cell lineage, in which it appears at a later stage as compared with CD33. In vitro proliferation and differentiation of cord blood-derived CD34+ cells (induced by stem cell factor and granulocyte–macrophage colony-stimulating factor) were consistently inhibited by the addition of anti-p75/AIRM1 mAb. Engagement of CD33 led to inhibition in some experiments. A sharp decrease of cell proliferation/survival was detected in all three p75/AIRM1+ chronic myeloid leukemias analyzed when cultured in the presence of either anti-p75/AIRM1 or anti-CD33 mAbs. Thus, the present study suggests that p75/AIRM1 and CD33 may play a regulatory role in normal myelopoiesis and may be viewed as suitable target molecules to counteract the proliferation/survival of chronic myeloid leukemias.
Resumo:
Laminin-5 (LN5) is a matrix component of epithelial tissue basement membranes and plays an important role in the initiation and maintenance of epithelial cell anchorage to the underlying connective tissue. Here we show that two distinct LN5 function-inhibitory antibodies, both of which bind the globular domain of the α3 subunit, inhibit proliferation of epithelial cells. These same antibodies also induce a decrease in mitogen-activated protein kinase activity. Inhibition of proliferation by the function-perturbing LN5 antibodies is reversed upon removal of the antibodies and can be overcome by providing the antibody-treated cells with exogenous LN5 and rat tail collagen. Because epithelial cells use the integrin receptor α3β1 to interact with both LN5 and rat tail collagen, we next investigated the possibility that integrin α3β1 is involved in mediating the proliferative impact of LN5. Proliferation of human epithelial cells is significantly inhibited by a function-perturbing α3 integrin antibody. In addition, antibody activation of β1 integrin restores the proliferation of epithelial cells treated with LN5 function-perturbing antibodies. These data indicate that a complex comprising LN5 and α3β1 integrin is multifunctional and contributes not only to epithelial cell adhesion but also to the regulation of cell growth via a signaling pathway involving mitogen-activated protein kinase. We discuss our study in light of recent evidence that LN5 expression is up-regulated at the leading tips of tumors, where it may play a role in tumor cell proliferation.
Resumo:
Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications.
Resumo:
The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.
Resumo:
The ssp1 gene encodes a protein kinase involved in alteration of cell polarity in Schizosaccharomyces pombe. ssp1 deletion causes stress sensitivity, reminiscent of defects in the stress-activated MAP kinase, Spc1; however, the two protein kinases do not act through the same pathway. Ssp1 is localized mainly in the cytoplasm, but after a rise in external osmolarity it is rapidly recruited to the plasma membrane, preferentially to active growth zones and septa. Loss of Ssp1 function inhibits actin relocalization during osmotic stress, in cdc3 and cdc8 mutant backgrounds, and in the presence of latrunculin A, implicating Ssp1 in promotion of actin depolymerization. We propose a model in which Ssp1 can be activated independently of Spc1 and can partially compensate for its loss. The ssp1 deletion mutant exhibited monopolar actin distribution, but new end take-off (NETO) could be induced in these cells by exposure to KCl or to latrunculin A pulse treatment. This treatment induced NETO in cdc10 cells arrested in G1 but not in tea1 cells. This suggests that cells that contain intact cell end markers are competent to undergo NETO throughout interphase, and Ssp1 is involved in generating the NETO stimulus by enlarging the actin monomer pool.