948 resultados para POLY(N-VINYL-2-PYRROLIDONE)
Resumo:
Bone morphogenetic protein-2 (BMP-2) has the ability to induce osteoblast differentiation of undifferentiated cells, resulting in the healing of skeletal defects when delivered with a suitable carrier. We have applied a versatile delivery platform comprising a novel composite of two biomaterials with proven track records – apatite and poly(lactic-co-glycolic acid) (PLGA) – to the delivery of BMP-2. Sustained release of this growth factor was tuned with variables that affect polymer degradation and/or apatite dissolution, such as polymer molecular weight, polymer composition, apatite loading, and apatite particle size. The effect of released BMP-2 on C3H10T1/2 murine pluripotent mesenchymal cells was assessed by tracking the expression of osteoblastic makers, alkaline phosphatase (ALP) and osteocalcin. Release media collected over 100 days induced elevated ALP activity in C3H10T1/2 cells. The expression of osteocalcin was also upregulated significantly. These results demonstrated the potential of apatite-PLGA composite particles for releasing protein in bioactive form over extended periods of time.
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.
Resumo:
Charge transfer properties of DNA depend strongly on the π stack conformation. In the present paper, we identify conformations of homogeneous poly-{G}-poly-{C} stacks that should exhibit high charge mobility. Two different computational approaches were applied. First, we calculated the electronic coupling squared, V2, between adjacent base pairs for all 1 ps snapshots extracted from 15 ns molecular dynamics trajectory of the duplex G15. The average value of the coupling squared 〈 V2 〉 is found to be 0.0065 eV2. Then we analyze the base-pair and step parameters of the configurations in which V2 is at least an order of magnitude larger than 〈 V2 〉. To obtain more consistent data, ∼65 000 configurations of the (G:C)2 stack were built using systematic screening of the step parameters shift, slide, and twist. We show that undertwisted structures (twist<20°) are of special interest, because the π stack conformations with strong electronic couplings are found for a wide range of slide and shift. Although effective hole transfer can also occur in configurations with twist=30° and 35°, large mutual displacements of neighboring base pairs are required for that. Overtwisted conformation (twist38°) seems to be of limited interest in the context of effective hole transfer. The results may be helpful in the search for DNA based elements for nanoelectronics
Resumo:
Free-radical copolymerization of 2-hydroxyethyl methacrylate with 2-hydroxyethyl acrylate can be successively utilized for the synthesis of water-soluble polymers and hydrogels with excellent physicochemical properties, thus showing promise for pharmaceutical and biomedical applications. In the work presented it has been demonstrated that water-soluble copolymers based on 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate exhibit lower critical solution temperature in aqueous solutions, whereas the corresponding high molecular weight homopolymers do not have this unique property. The temperature-induced transitions observed upon heating the aqueous solutions of these copolymers proceed via liquid−liquid phase separation. The hydrogels were also synthesized by copolymerizing 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate in the absence of a bifunctional cross-linker. The cross-linking of these copolymers during copolymerization is believed to be due to the presence of bifunctional admixtures or transesterification reactions. Transparency, swelling behavior, mechanical properties, and porosity of the hydrogels are dependent upon the monomer ratio in the copolymers. Hydrogel samples containing more 2-hydroxyethyl methacrylate are less transparent, have lower swelling capacity, higher elastic moduli, and pores of smaller size. The assessment of the biocompatibility of the copolymers using the slug mucosal irritation test revealed that they are also less irritant than poly(acrylic acid).
Resumo:
The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and δ3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.
Resumo:
The synthesis of a series of poly(aromatic amide) dendrimers up to the second generation is described herein. The AB, building block used throughout the synthesis of the dendrimers was the allyl ester of 3,5-diaminocinnamic acid, which has been synthesized from 3,5-dinitrobenzoic acid in good yield with use of a four-step procedure. Dendron synthesis was achieved via a convergent approach with use of a sequence of deprotection/coupling steps. Two commercially available alcohols, L-menthol and citronellol, were coupled to the AB(2) monomer by using an alkyl diacid spacer and two core units; 1,7-diaminoheptane and tris(2-aminoethyl)amine have been used to produce the final dendrimers. Characterization was carried out by NMR and IR spectroscopies, MALDI-TOF mass spectrometry, GPC, and DSC. The novel monomer and dendritic derivatives exhibited a strong fluorescence emission in the visible region (lambda approximate to 500 nm) of the spectrum and a weak emission in the near-infrared (lambda approximate to 850 nm) upon excitation in the near-UV region. The fluorescence emission characteristics were found to be solvent and dendrimer generation dependent.
Resumo:
Reaction of 1-(2'-pyridylazo)-2 -naphthol (Hpan) with [Ru(dmso)(4)Cl-2] (dmso=dimethylsulfoxide), [Ru(trpy)Cl-3] (trpy=2,2',2 ''-terpyridine), [Ru(bpy)Cl-3] (bpy=2,2'-bipyridine) and [Ru(PPh3)(3)Cl-2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)(2)], [Ru(trpy)(pan)](+) (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)(2)(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. in each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)](+) and [Ru(bpy)(pan)(pic)](+) complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d(6), S = 0) and show characteristic H-1 NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)-Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)(2)] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy) (pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A novel diazirine functionalised aniline derivative, 3-(3-aminophenyl)-3-methyldiazirine 1, was prepared and employed as an AB(2)-type monomer in the synthesis of hyperbranched polymers; thus providing the first instance in which polyamines have been prepared via carbene insertion polymerisation. Photolysis of the monomer 1 in bulk and in solution resulted in the formation of hyperbranched poly(aryl amine)s with degrees of polymerisation (DP) varying from 9 to 26 as determined by gel permeation chromatography (GPC). In solution, an increase in the initial monomer concentration was generally found to result in a decrease in the molecular weight characteristics of the resulting poly(aryl amine) s. Subsequent thermal treatment of the poly(aryl amine) s caused a further increase in the DP values up to a maximum of 31. Nuclear magnetic resonance (NMR) spectroscopic analysis revealed that the increase in molecular weight upon thermal treatment resulted from hydroamination of styrenic species formed in the initial photopolymerisation or activation of diazirine moieties.
Resumo:
In this work we study the colloidal osmotic pressure (COP) and aggregate shape in phosphate saline buffer solutions (PH 7.4) containing bovine serum albumin (BSA), poly(ethylene glycol) lipid (PEG(2000)-PE) and Dextran (Dx). Dx was added to the BSA/PEG(2000)-PE system in order to increase the COP of the solution to levels comparable to the COP of healthy adults, with the aim of using the solution as a blood COP regulator. Dynamic light scattering and small angle X-ray scattering results shown the formation of BSA/PEG(2000)-PE/Dx aggregates in the solution. Osmometry results shown that the addition of Dx to the BSA/PE2000-PE system could successfully increase the COP, through the formation of BSA/PEG(2000)-PE/Dx aggregates. The BSA/PEG(2000)-PE/Dx solutions attained COP= 15 mm Hg, representing 60% of COP measured for healthy adults. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The structure and shear flow behaviour of aqueous micellar solutions and gels formed by an amphiphilic poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer with a lengthy hydrophilic poly(oxyethylene) block has been investigated by rheology, small angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). SANS revealed that bridging of chains between micelles introduces, in the micellar solution, an attractive long-range component which can be described through a potential of interaction corresponding to sticky soft spheres. The strength of the attractive interaction increases with increasing concentration. Rheology showed that the dependence of the storage modulus with temperature can be explained as a function of the micellar bridging, micellisation and phase morphology. SAXS studies showed that the orientation adopted by the system in the get phase under shear is similar to that previously observed by us for the gel phase of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer with a long poly(oxyethylene) chain, suggesting that the micellar corona/core length ratio and not the architecture of the block copolymer influences the alignment of the gel phase under shear.
Resumo:
In this work we report the structural characteristics of bovine serum albumin/poly(ethylene glycol) lipid conjugate (BSA/PEG(2000)-PE) complexes under physiological conditions (37 degrees C and pH 7.4) for particular fractions of BSA to PEG-lipid concentration, CBSA/C-PEG2000-PE. Ultraviolet fluorescence spectroscopy (UV) results shown that PEG(2000)-PE is associated to BSA, leading to;protein unfolding for fixed C-BSA = 0.01 wt % and variable C-PEG2000-PE = 0.0015-0.6 wt %. Tryptophan groups on the BSA surface are in contact with the PEG-lipid at C-PEG2000-PE = 0.0015 wt %, while they are exposed to water at C-PEG2000-PE (>)0.0015 wt %. Dynamic and static light scattering (DLS and SLS) and small-angle neutron scattering (SANS) point out the existence of individual BSAIPEG-lipid complexes in the system for fixed C-BSA = 1 wt % and variable C-PEG2000-PE = 0.15-2 wt %. DLS shows that there is only one BSA molecule per protein/PEG-lipid complex, while SLS shows that the PEG-lipid associates to the BSA without promoting aggregation between adjacent protein/ polymer-lipid conjugate complexes. SANS was used to show that BSA/PEG(2000)-PE complexes adopt an oblate ellipsoidal shape. Partially unfolded BSA is contained in the core of the oblate ellipsoid, which is surrounded by an external shell containing the PEG(2000)-PE.
Resumo:
Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.
Resumo:
Crystalline aromatic poly(ether ketone)s Such as PEEK and PEK may be cleanly and reversibly derivatized by dithioketalization of the carbonyl groups With 1,2-ethanedithiol or 1,3-propanedithiol under strong acid conditions. The resulting 1,3-dithiolane and 1,3-dithiane polymers are hydrolytically stable, amorphous, and readily soluble in organic solvents such as chloroform and THF and are thus (unlike their parent polymers) easily characterized by gel permeation chromatography (GPC). GPC analysis of a range of derivatized PEEK samples using light-scattering detection revealed, in some instances, a bimodal molecular weight distribution with a small but potentially significant (and previously undetected) very high-molecular-weight fraction.
Resumo:
The zinc and cadmium ethylxanthate complexes of N,N,N',N'-tetramethylethylenediamine (TMEDA), [M(S2COEt)(2)TMEDA], were synthesized and characterized with infrared, H-1 and C-13 NMR spectroscopy, mass spectrometry and X-ray crystallography. Whereas the cadmium complex has a six-coordinate {CdS4N2} centre with bidentate xanthate ligands, the zinc complex contains four coordinate {ZnS2N2} zinc with two monodentate xanthate groups. The cadmium species [Cd(S2COEt)(2)(diamine)] (where diamine = N,N-dimethylethylenediamine or N,N'-diisopropylethylenediamine) were also synthesized. The surfactant-assisted formation of nanoparticles from [Cd(S2COEt)(2)] and [Cd(S2COEt)(2)TMEDA] was studied with TEM, XRD and XRF techniques. From [Cd(S2COEt)(2)], spherical nanoparticle aggregates 140-200 nm in diameter were obtained but from [Cd(S2COEt)(2)TMEDA], single nanoparticles were produced with estimated diameters in the range of 4-7 nm and almost no aggregation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.