954 resultados para PLATINUM-ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A beta-alumina de sódio é uma cerâmica condutora de íons Na+ utilizada como eletrólito sólido em baterias de sódio para armazenamento de energias intermitentes como energia solar e eólica. Devido ao alto teor de sódio, esse material é instável a altas temperaturas, podendo sofrer variações de composição durante a etapa de sinterização convencional que utiliza altas temperaturas por longos períodos de tempo. A sinterização flash é uma técnica de sinterização ativada por corrente elétrica que proporciona a densificação de compactos cerâmicos em poucos segundos, a temperaturas notavelmente mais baixas que as convencionais. Uma vez obrigatória a passagem de corrente elétrica através da amostra, a sinterização flash de qualquer material condutor parece bastante razoável. Não obstante, até o presente momento a maioria dos trabalhos publicados sobre o assunto aborda apenas condutores de vacância de oxigênio ou semicondutores, materiais compatíveis com eletrodos de platina (Pt). Nesse trabalho a sinterização flash de um condutor catiônico foi estudada utilizando-se a beta-alumina como material modelo. A beta-alumina foi sintetizada pelo método dos precursores poliméricos, caracterizada e então submetida à sinterização flash. O material de eletrodo padrão (platina) provou ser um eletrodo bloqueador em contato com a beta-alumina. O sucesso da sinterização flash foi determinado pela troca do material de eletrodo por prata (Ag), o que possibilitou uma reação eletroquímica reversível nas interfaces eletrodo-cerâmica e possibilitou a obtenção de um material densificado com morfologia e composição química homogêneas. Devido à metaestabilidade da beta-alumina, a atmosfera dos experimentos precisou ser alterada para manter a integridade desse material rico em um metal alcalino (Na+). A sinterização flash de um condutor catiônico é apresentada pela primeira vez na literatura e ressalta a importância da reação de eletrodo, que é um fator limitante para o sucesso da sinterização flash e precisa ser estudada e adaptada para cada tipo de material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania-supported platinum (mainly as Pt(II)) has been found to effectively catalyze the hydrosilylation of 1,3-diynes at 70 °C with low catalyst loading (0.25 mol %) under solvent-free conditions. Monohydrosilylation was achieved for diaryl-substituted diynes, whereas dialkyl-substituted diynes were transformed into the corresponding dihydrosilylated products in good yields. In every case, the process was proven to be highly stereoselective, with syn addition of the silicon–hydrogen bond, and regioselective, with the silicon moiety exclusively bonded to the most internal carbon atom of the 1,3-diyne (β-E product), as confirmed by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-doped diamond electrodes have emerged as anodic material due to their high physical, chemical and electrochemical stability. These characteristics make it particularly interesting for electrochemical wastewater treatments and especially due to its high overpotential for the Oxygen Evolution Reaction. Diamond electrodes present the maximum efficiency in pollutant removal in water, just limited by diffusion-controlled electrochemical kinetics. Results are presented for the elimination of benzoic acid and for the electrochemical treatment of synthetic tannery wastewater. The results indicate that diamond electrodes exhibit the best performance for the removal of total phenols, COD, TOC, and colour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetric aqueous capacitor was constructed by employing zeolite-templated carbon (ZTC) as a pseudocapacitive positive electrode and KOH-activated carbon as a stable negative electrode. The asymmetric capacitor can be operated with the working voltage of 1.4 V, and exhibits an energy density that is comparable to those of conventional capacitors utilizing organic electrolytes, thanks to the large pseudocapacitance of ZTC. Despite relatively thick electrode (0.2 mm) configuration, the asymmetric capacitor could be well operated under a current density of 500 mA g −1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of o-cresol in acidic medium on platinum electrode has been studied by cyclic voltammetry and in situ Fourier transform infrared spectroscopy. The o-cresol suffers hydrolysis during oxidation giving rise to the formation of methyl-p-benzoquinone. In situ FTIR spectroscopic studies also reveal the presence of CO2, formed as a consequence of the rupture of the aromatic ring. Moreover, the oxidation of o-cresol in acidic medium produces a polymeric film on the platinum surface that precludes further oxidation of o-cresol. The reduction of o-cresol at potentials below 0 V produces in the first step the partial reduction of the aromatic ring and when the potential goes to values below 0 V, methyl-cyclohexanone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites consisting of polyaniline (PANI) coatings inside the microporosity of an activated carbon fibre (ACF) were prepared by electrochemical and chemical methods. Electrochemical characterization of both composites points out that the electrodes with polyaniline show a higher capacitance than the pristine porous carbon electrode. These materials have been used to develop an asymmetric capacitor based on activated carbon (AC) as negative electrode and an ACF–PANI composite as positive electrode in H2SO4 solution as electrolyte. The presence of a thin layer of polyaniline inside the porosity of the activated carbon fibres avoids the oxidation of the carbon material and the oxygen evolution reaction is produced at more positive potentials. This capacitor was tested in a maximum cell voltage of 1.6 V and exhibited high energy densities, calculated for the unpackaged active materials, with values of 20 W h kg−1 and power densities of 2.1 kW kg−1 with excellent cycle lifetime (90% during the first 1000 cycles) and high coulombic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum nanoparticles supported on titania efficiently catalyzed the diboration of alkynes and alkenes under solvent- and ligand-free conditions in air. The cis-1,2-diborylalkenes and 1,2-diborylalkanes were obtained in moderate to excellent yields following, in most cases, a simple filtration workup protocol. The versatility of the cis-1,2-diboronvinyl compounds was demonstrated in a series of organic transformations, including the Suzuki–Miyaura cross coupling and the boron–halogen exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments have been carried out in sulfuric and perchloric acid solutions on Pt(S)[n(110) × (100)] electrodes. The comparison between the two different electrolytic media reveals an important influence of the anion in the voltammetric features. Total charge curves have been obtained with the CO charge displacement method in combination with voltammetric measurements. From these curves, the dependence of the pztc with the step density and the strength of the anion adsorption have been analyzed. The problem of the so-called third peak is treated for a series of electrodes that contain (110) terraces, revealing the requirement of (110) domains for occurrence of this adsorption state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroreduction of nitrate on Pt(1 0 0) electrodes in phosphate buffer neutral solution, pH 7.2, is reported. The sensitivity of the reaction to the crystallographic order of the surface is studied through the controlled introduction of defects by using stepped surfaces with (1 0 0) terraces of different length separated by monoatomic steps, either with (1 1 1) or (1 1 0) symmetry. The results of this study show that nitrate reduction occurs mainly on the well defined (1 0 0) terraces in the potential region where H adsorption starts to decrease, allowing the nitrate anion to access the surface. Adsorbed NO has been detected as a stable intermediate in this media. An oxidation process observed at 0.8 V has been identified as leading to the formation of adsorbed NO and being responsible for a secondary reduction process observed in the subsequent negative scan. Using in situ FTIRS, ammonium was found to be the main product of nitrate reduction. This species can be oxidized at high potentials resulting in adsorbed NO and nitrate (probably with nitrite as intermediate).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a chemical step resulting in the formation of 5,6-dihydroxyindoline quinone as final product. This oxidation process has also been investigated by vibrational spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.