967 resultados para PHOSPHORUS PENTASULFIDE
Resumo:
Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.
Resumo:
Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.
Resumo:
In this thesis the role played by expansive and introduced species in the phytoplankton ecology of the Baltic Sea was investigated. The aims were threefold. First, the studies investigated the resting stages of dinoflagellates, which were transported into the Baltic Sea via shipping and were able to germinate under the ambient, nutrient-rich, brackish water conditions. The studies also estimated which factors favoured the occurrence and spread of P. minimum in the Baltic Sea and discussed the identification of this morphologically variable species. In addition, the classification of phytoplankton species recently observed in the Baltic Sea was discussed. Incubation of sediments from four Finnish ports and 10 ships ballast tanks revealed that the sediments act as sources of living dinoflagellates and other phytoplankton. Dinoflagellates germinated from all ports detected and from 90% of ballast tanks. The concentrations of cells germinating from ballast tank sediments were mostly low compared with the acceptable cell concentrations set by the International Maritime Organization s (IMO s) International Convention for the Control and Management of Ships Ballast Water and Sediments. However, the IMO allows such high concentrations of small cells in the discharged ballast water that the total number of cells in large ballast water tanks can be very high. Prorocentrum minimum occurred in the Baltic Sea annually but with no obvious trend in the 10-year timespan from 1993 to 2002. The species occurred under wide ranges of temperatures and salinities and the abundance of the species was positively related especially to the presence of organic nitrogen and phosphorus. This indicated that the species was favoured by increased organic nutrient loading and runoff from land and rivers. The cell shape of P. minimum varied from triangular to oval-round, but morphological fine details indicated that only one morphospecies was present. P. minimum also is, according to present knowledge, the only potentially harmful phytoplankton species that has recently expanded widely into new areas of the Baltic Sea.
Resumo:
Sediment resuspension, the return of the bottom material into the water column, is an important process that can have various effects on a lake ecosystem. Resuspension caused by wind-induced wave disturbance, currents, turbulent fluctuations and bioturbation affects water quality characteristics such as turbidity, light conditions, and concentrations of suspended solids (SS) and nutrients. Resuspension-mediated increase in turbidity may favour the dominance of phytoplankton over macrophytes. The predator-prey interactions contributing to the trophic state of a lake may also be influenced by increasing turbidity. Directly, the trophic state of a lake can be influenced by the effect of sediment resuspension on nutrient cycling. Resuspension enhances especially the cycling of phosphorus by bringing the sedimentary nutrients back into the water column and may thereby induce switches between phosphorus and nitrogen limitation. The contribution of sediment resuspension to gross sedimentation, turbidity, and concentration of SS and nutrients was studied in a small, deep lake as well as in a multibasin lake with deep and shallow areas. The effect of ice cover on sediment resuspension and thereby on phosphorus concentrations was also studied. The rates of gross sedimentation and resuspen¬sion were estimated with sediment traps and the associations between SS and nutrients were considered. Sediment resuspension, caused by wind activity, comprised most of the gross sedimenta¬tion and strongly contributed to the concentration of SS and turbidity in the lakes studied. Additionally, via the influence on SS, resuspension affected the concentration of total phosphorus (TP) and soluble reactive phosphorus (SRP), as well as the total nitrogen to total phosphorus (TN:TP) ratio. Although contrasting results concerning the dependence between the SS and SRP concentrations were observed, it could be concluded that sediment resuspension during strong algal blooms (pH > 9) led to aerobic release of P. The main findings of this thesis were that in the course of the growing season, sediment resuspension coupled with phytoplankton succession led to liberation of P from resuspended particles, which in turn resulted in high TP concentrations and low TN:TP ratios. This development was likely a cause of strong cyanobacterial blooms in midsummer.
Resumo:
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. The present study provides an assessment of spatial variation of DOM concentrations and export, and interactions between DOM, catchment characteristics, land use and climatic factors in boreal catchments. The influence of catchment characteristics, land use and climatic drivers on the concentrations and export of total organic carbon (TOC), total organic nitrogen (TON) and dissolved organic phosphorus (DOP) was estimated using stream water quality, forest inventory and climatic data from 42 Finnish pristine forested headwater catchments, and water quality monitoring, GIS land use, forest inventory and climatic data from the 36 main Finnish rivers (and their sub-catchments) flowing to the Baltic Sea. Moreover, the export of DOM in relation to land use along a European climatic gradient was studied using river water quality and land use data from four European areas. Additionally, the role of organic and minerogenic acidity in controlling pH levels in Finnish rivers and pristine streams was studied by measuring organic anion, sulphate (SO4) and base cation (Ca, Mg, K and Na) concentrations. In all study catchments, TOC was a major fraction of DOM, with much lower proportions of TON and DOP. Moreover, most of TOC and TON was in a dissolved form. The correlation between TOC and TON concentrations was strong and TOC concentrations explained 78% of the variation in TON concentrations in pristine headwater streams. In a subgroup of 20 headwater catchments with similar climatic conditions and low N deposition in eastern Finland, the proportion of peatlands in the catchment and the proportion of Norway spruce (Picea abies Karsten) of the tree stand had the strongest correlation with the TOC and TON concentrations and export. In Finnish river basins, TOC export increased with the increasing proportion of peatland in the catchment, whereas TON export increased with increasing extent of agricultural land. The highest DOP concentrations and export were recorded in river basins with a high extent of agricultural land and urban areas, reflecting the influence of human impact on DOP loads. However, the most important predictor for TOC, TON and DOP export in Finnish rivers was the proportion of upstream lakes in the catchment. The higher the upstream lake percentage, the lower the export indicating organic matter retention in lakes. Molar TOC:TON ratio decreased from headwater catchments covered by forests and peatlands to the large river basins with mixed land use, emphasising the effect of the land use gradient on the stoichiometry of rivers. This study also demonstrated that the land use of the catchments is related to both organic and minerogenic acidity in rivers and pristine headwater streams. Organic anion dominated in rivers and streams situated in northern Finland, reflecting the higher extent of peatlands in these areas, whereas SO4 dominated in southern Finland and on western coastal areas, where the extent of fertile areas, agricultural land, urban areas, acid sulphate soils, and sulphate deposition is highest. High TOC concentrations decreased pH values in the stream and river water, whereas no correlation between SO4 concentrations and pH was observed. This underlines the importance of organic acids in controlling pH levels in Finnish pristine headwater streams and main rivers. High SO4 concentrations were associated with high base cation concentrations and fertile areas, which buffered the effects of SO4 on pH.
Resumo:
Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.
Resumo:
The half-sandwhich ruthenium chloro complexes bearing chelated diphosphazane ligands, [(eta(5)-Cp)RuCl{kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] [R = C6H3Me2-2,6] (1) and [(eta(5)-Cp*)RuCl{kappa(2)-P, P-X2PN(R)PYY'}] [R = Me, X = Y = Y' = OC6H5 (2); R = CHMe2, X-2 = C20H12O2, Y = Y' = OC6H5 (3) or OC6H4'Bu-4 (4)] have been prepared by the reaction of CpRu(PPh3)(2)Cl with (RO)(2)PN(Me)P(OR)(2) [R = C6H3Me2-2,6 (L-1)] or by the reaction of [Cp*RuCl2](n) with X2PN(R)PYY' in the presence of zinc dust. Among the four diastereomers (two enantiomeric pairs) possible for the "chiral at metal" complexes 3 and 4, only two diastereomers (one enantiomeric pair) are formed in these reactions. The complexes 1, 2, 4 and [(eta(5)-Cp)RuCl {kappa(2)-P,P-Ph2PN((S)-*CHMePh)PPhY)] [Y = Ph (5) or N2C3HMe2-3,5 (SCSPRRu)-(6)] react with NaOMe to give the corresponding hydride complexes [(eta(5) -Cp)RuH {kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] (7), [(eta(5)-Cp*)RuH {kappa(2)-P,P'-X2PN(R)PY2)] [R = Me, X = Y = OC6H5 (8); R = CHMe2, X-2 = C20H12O2, Y = OC6H4'Bu-4 (9)] and [(eta(5) -Cp)RuH(kappa(2)-P, P-Ph2PN((S)-*CHMePh)PPhY)][Y =Ph (10) or N2C3HMe2-3,5 (SCSPRRu)(11a) and (SCSPSRu)-(11b)]. Only one enantiomeric pair of the hydride 9 is obtained from the chloro precursor 4 that bears sterically bulky substituents at the phosphorus centers. On the other hand, the optically pure trichiral complex 6 that bears sterically less bulky substituents at the phosphorus gives a mixture of two diastereomers (11a and 11b). Protonation of complex 7 using different acids (HX) gives a mixture of [(eta(5)- Cp)Ru(eta(2)-H-2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2))]X (12a) and [(eta(5)-Cp)Ru(H)(2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2)}]X (12b) of which 12a is the major product independent of the acid used; the dihydrogen nature of 12a is established by T, measurements and also by synthesizing the deuteride analogue 7-D followed by protonation to obtain the D-H isotopomer. Preliminary investigations on asymmetric transfer hydrogenation of 2-acetonaphthone in the presence of a series of chiral diphosphazane ligands show that diphosphazanes in which the phosphorus centers are strong pi-acceptor in character and bear sterically bulky substituents impart moderate levels of enantioselectivity. Attempts to identify the hydride intermediate involved in the asymmetric transfer hydrogenation by a model reaction suggests that a complex of the type, [Ru(H)(Cl){kappa(2)-P,P-X2PN(R)PY2)(solvent)(2)] could be the active species in this transformation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Suomenlinna on yksi Helsingin suosituimmista matkailu- ja kulttuurinähtävyyksistä. Kustaanmiekan, samoin kuin koko Suomenlinnan luonto on muodostunut perinteisestä suomalaisesta saaristoluonnosta ja vuosisatojen saatossa paikalle tulleista linnoituksien kasvistosta. Saaren vaihtelevien elinympäristöjen johdosta alueen kasvillisuus on hyvin rikasta. Linnoituksien monet kasvilajit ovat tulleet tulokaskasveina eri puolilta Eurooppaa sekä Venäjältä. Suurin osa Suomenlinnan alueesta on kallioketoa ja tämän lisäksi myös valliketoa, joista molemmat kuuluvat suojeltaviin alueisiin. Kustaanmiekan niityillä kasvaa keto- ja paahdelajeja, kuten harvinaista ketonoidanlukkoa (Botrychium lunaria L.) sekä ketoneilikkaa (Dianthus deltoides L.). Tämän tutkimuksen ensisijaisena tarkoituksena oli kartoittaa Kustaanmiekan alueen kesäkauden 2009 ketokasvilajisto ja eri putkilokasvilajien runsaus. Tutkimuksessa selvitettiin myös maaperätekijöiden ja alueen hoitohistorian mahdollista vaikutusta ketokasvilajistoon. Tutkimuksessa kartoitettiin kymmenen eri kedon kasvillisuus Suomenlinnan Kustaanmiekan linnoitusalueella. Kedot sijaitsivat eri puolilla Kustaanmiekkaa, sellaisilla paikoilla, missä ketokasvillisuus oli runsainta. Maastotyöt suoritettiin kesä- ja heinäkuussa laskemalla jokaisen kedon ruutujen putkilokasvien peittävyydet sekä listaamalla ylös myös ruutujen ulkopuoliset kevät- ja loppukesän kukkijat touko- ja elokuussa. Maaperän ominaisuuksien määrittämiseksi otettiin kultakin kedolta pintamaanäytteet elokuussa. Muita tutkittuja muuttujia olivat maapinnan kaltevuus sekä sammalen, karikkeen, paljaan maan, kenttäkasvillisuuden pohjakerros ja kallion osuus tutkimusruuduilla. Ketojen kasvillisuuden keskimääräinen korkeus mitattiin kesä- ja heinäkuussa. Kasvistossa oli selviä eroavaisuuksia ketojen välillä. Kasvilajien määrä vaihteli ketojen kokonaislajimäärän ollessa 40-60 kasvilajia. Yhteensä kedoilta löytyi 120 eri putkilokasvilajia, joista useimmat kukkivat sekä kesä- että heinäkuussa. Ketojen kasvilajimäärä vaihteli yhdellä neliömetrillä 6,3-13,6 kasvilajiin, minkä lisäksi Shannon-Wienerin diversiteetti-indeksi vaihteli 1,4-2,3 arvon välillä. Yleisimpiä lajeja, joita kedoilla tavattiin, olivat muun muassa siankärsämö (Achillea millefolium L.), koiranheinä (Dactylis glomerata L.), juolavehnä (Elymus repens L.) ja hopeahanhikki (Potentilla argentea L.). Alueella kasvoi myös muutamia sotatulokaslajeja kuten harmiota (Berteroa incana L.), ukonpalkoa (Bunias orientalis L.) ja karvahorsmaa (Epilobium hirsutum L.). Maaperätekijöillä, kuten suurella fosforin pitoisuudella ei ollut vaikutusta kasvilajien määrään kedoilla. Vain maan pH ja johtoluku korreloivat positiivisesti ketojen kasvillisuuden korkeuden kanssa. Vaikka tulosten perusteella ketojen hoidolla ei ollut vaikutusta ketojen kasvillisuuden määrään, voidaan kuitenkin olettaa oikeanlaisen hoidon parantavan tyypillisten ketokasvien kilpailukykyä muita niittykasveja kohtaan.
Resumo:
Protein modification via enzymatic cross-linking is an attractive way for altering food structure so as to create products with increased quality and nutritional value. These modifications are expected to affect not only the structure and physico-chemical properties of proteins but also their physiological characteristics, such as digestibility in the GI-tract and allergenicity. Protein cross-linking enzymes such as transglutaminases are currently commercially available, but also other types of cross-linking enzymes are being explored intensively. In this study, enzymatic cross-linking of β-casein, the most abundant bovine milk protein, was studied. Enzymatic cross-linking reactions were performed by fungal Trichoderma reesei tyrosinase (TrTyr) and the performance of the enzyme was compared to that of transglutaminase from Streptoverticillium mobaraense (Tgase). Enzymatic cross-linking reactions were followed by different analytical techniques, such as size exclusion chromatography -Ultra violet/Visible multi angle light scattering (SEC-UV/Vis-MALLS), phosphorus nuclear magnetic resonance spectroscopy (31P-NMR), atomic force (AFM) and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). The research results showed that in both cases cross-linking of β-casein resulted in the formation of high molecular mass (MM ca. 1 350 kg mol-1), disk-shaped nanoparticles when the highest enzyme dosage and longest incubation times were used. According to SEC-UV/Vis-MALLS data, commercial β-casein was cross-linked almost completely when TrTyr and Tgase were used as cross-linking enzymes. In the case of TrTyr, high degree of cross-linking was confirmed by 31P-NMR where it was shown that 91 % of the tyrosine side-chains were involved in the cross-linking. The impact of enzymatic cross-linking of β-casein on in vitro digestibility by pepsin was followed by various analytical techniques. The research results demonstrated that enzymatically cross-linked β-casein was stable under the acidic conditions present in the stomach. Furthermore, it was found that cross-linked β-casein was more resistant to pepsin digestion when compared to that of non modified β-casein. The effects of enzymatic cross-linking of β-casein on allergenicity were also studied by different biochemical test methods. On the basis of the research results, enzymatic cross-linking decreased allergenicity of native β-casein by 14 % when cross-linked by TrTyr and by 6 % after treatment by Tgase. It can be concluded that in addition to the basic understanding of the reaction mechanism of TrTyr on protein matrix, the research results obtained in this study can have high impact on various applications like food, cosmetic, medical, textile and packing sectors.
Resumo:
The variations in the activities of the alkaline and acid phosphatases of the silkworm, Bombyx mori, were studied in all stages of the life cycle. From hatching until the spinning stage a steady increase was recorded in the activity of both the enzymes followed with a conspicuous decrease at each moult. During the pupal stage the alkaline phosphatase was almost absent, whereas the acid phosphatase maintained a high and constant value. Increase or decrease of the activity of the enzymes during larval development was reflected in a decrease or increase in the acid-soluble phosphorus content. Acid phosphatase activity slowly increased from laying of the eggs to hatching of the larvae with a concomitant decrease in the acid-soluble phosphorus. Tissue analysis showed a high concentration of the alkaline enzyme in the intestines, but the haemolymph was almost free of both enzymes. Feeding of inorganic phosphate increased the alkaline enzyme in the intestines, whereas glucose had no effect on either of the enzymes in the intestines.
Resumo:
An Arthrobacter species (tentatively identified as A. citreus), isolated by the enrichment culture method with glycerol as the sole source of carbon, was studied with a view to elucidate its pathway of glycerol breakdown. Evidence has been obtained against the functioning of the phosphorylative pathway by the study of (1) oxygen uptake with phosphorylated intermediates, (2) uptake of inorganic phosphorus by intact resting cells, (3) action of inhibitors like sodium fluoride, sodium azide, sodium arsenite, sodium iodoacetate, and parachloromercurybenzoate on oxygen uptake with resting cell suspensions and cell-free extracts in some cases. Evidence presented for the functioning of a non-phosphorylative pathway includes studies on the oxidation of glycerol, D-glyceraldehyde, glycerate, glycolic aldehyde, glycolic acid, glyoxylic acid, and formic acid to carbon dioxide and water. Further, the possibility of glyoxylate metabolism through the tricarboxylic acid cycle by its formation of malate was shown. The significance of the above pathway is that it has pointed to an alternative route of carbohydrate metabolism and entry into the tricaboxylic acid cycle without the intervention of pyruvate or the condensing enzyme.
Resumo:
Lihaluujauho muodostaa maatilojen myytävien kasvi- ja eläinperäisten tuotteiden jälkeen tärkeimmän agroekosysteemeistä poispäin suuntautuvan ravinnevirran. Se sisältää runsaasti pääkasvinravinteita typpeä, fosforia ja kalsiumia (N ~8%, P ~5%, Ca yleensä ~10-15% luuaineksen määrästä riippuen), sekä kaliumia n.1% tai alle. Lihaluujauho on todettu tehokkaaksi lannoitteeksi useilla viljelykasveilla ja sen käyttö on sallittu myös luomuviljelyssä EU-alueella. Lihaluujauhoon ja erityisesti sen rehukäyttöön liittyvistä riskeistä merkittävin on TSE-tautien riski (naudan BSE-, lampaiden ja vuohien scrapie-, sekä ihmisen vCJD-taudit). Rehukäyttöä on monissa maissa rajoitettu 1980-luvulla puhjenneen BSE-kriisin myötä. BSE-taudin leviäminen yhdistettiin tilanteeseen, jossa nautaperäistä lihaluujauhoa käytettiin nautaeläinten rehun ainesosana. Myös lihaluujauhon käytössä turkiseläinrehuna saattaa piillä BSE:n tai muun TSE-taudin riski. Oikein käsitellyn lihaluujauhon lannoitekäyttöön ei kuitenkaan näytä tarkastelemieni tutkimusten perusteella sisältyvän huomattavaa TSEriskiä, jos huolehditaan asianmukaisista varotoimista ja menettelyistä sekä tuotteen valmistusprosessissa, että käytettäessä lannoitetta. Lihaluujauhon lannoitekäytön lisääminen edistäisi ruokajärjestelmämme ravinnekierron sulkemista etenkin fosforin osalta. Lihaluujauho on uusiutuva luonnonvara, jonka lannoitekäytöllä voitaisiin korvata huomattava osa lannoiteaineena kulutettavista fosforipitoisista kiviaineista. Sokerijuurikkaan lannoituskokeissa Varsinais-Suomen Kaarinassa vuosina 2008 ja 2009 lihaluujauhokäsittelyt eivät menestyneet aivan yhtä hyvin satotasovertailussa kuin kontrollikäsittelyiden NPK-väkilannoitteet, mutta laatuominaisuuksiltaan (sokeripitoisuus, amino-N, K, ja Na-pitoisuudet) joiltakin osin kontrollikäsittelyjä paremmin. Kokeissa käytetyt lajikkeet olivat ’Jesper’ vuonna 2008 ja ’Lincoln’ vuonna 2009. Käytetty lihaluujauholannoite oli Honkajoki Oy:n Viljo Yleislannoite 8-4-3, joka sisälsi noin 10% kaliumsulfaatin ja kasviperäisten sivutuotteiden seosta. Viljo-lannoitetta käytettiin sekä yksistään, että yhdistettynä 10-25%:iin väkilannoitetta. Vuoden 2009 Viljo-koejäseniin vielä lisättiin kaliumsulfaattilannoitetta (42% K, 18% S), jotta päästiin annetun kaliumin määrässä päästiin lannoitussuosituksen (60 kg K/ha) tasolle. Pelkkä Viljo-lannoite tuotti merkitsevästi alhaisemmat sadot kuin kontrollikäsittelyt molempina vuosina. Kuitenkin kun Viljolannoitteen ohella käytettiin väkilannoitetta (10-25% kasvin typentarpeesta) päästiin varsin lähelle kontrollikäsittelyiden satotasoja. Myös pelkän LLJ-lannoitteen tuottamat satotasot olivat kuitenkin selvästi paremmat kuin Suomen keskimääräiset juurikassadot. Viljo-käsittelyillä oli selvästi positiivinen vaikutus laatutekijöihin amino-N, K ja Na vuonna 2008, mutta vuonna 2009 näiden pitoisuudet jäivät kontrollikäsittelyjen tasolle. Viljo-käsittelyiden sokeripitoisuudet olivat vuonna 2008 kontrollikäsittelyn luokkaa ja Viljo77%+NK1:n osalta kontrollia merkitsevästi paremmat. Vuoden 2009 sokeripitoisuudet olivat kaikilla koejäsenillä erinomaiset, ja käsittelyiden välillä ei ilmennyt merkitseviä eroja. Kokeiden perusteella kaliumsulfaatilla täydennetty lihaluujauho on hyvin toimiva lannoite sokerijuurikkaalla Suomen olosuhteissa, etenkin yhdistettynä väkilannoitteeseen.
Resumo:
Cyclohexanone and 2-, 3- and 4-methylcyclohexanones have been condensed with acetylene to give the respective 1-ethinylcyclohexanola. The 1-ethinylcyclohexanols were hydrogenated to the respective 1-vinyl- and 1-ethylcyclohexanols. The 1-vinylcyclohexanols have been treated with phosphorus tribromide to give the corresponding rearranged β-cyclohexylidenethyl bromides which have been converted to the pyridinium salts. The latter were treated with p-nitrosodimethylaniline and alkali (Krohnke's method) to give the corresponding nitrones which were hydrolyzed to the corresponding aldehydes. The 1-ethinyl-, 1-vinyl- and 1-ethylcyclohexanols prepared were subjected to pharmacological tests.
Resumo:
Amination reactions of 2,6-bis(primary amino)cyclotetraphosphazenes yield not only the expected (amino)cyclotetraphosphazenes but also novel trans-annular bridged bicyclic phosphazenes by an intramolecular substitution pathway. In addition, resins are formed in some reactions by an intermolecular condensation. The effect of substituents attached to the phosphazene ring, the attacking nucleophile and solvent on the formation of the trans-annular P-N-P bridge is considered in detail in relation to plausible reaction mechanisms. Analytical separation of bicyclic phosphazenes by high performance liquid chromatography (HPLC) on a reverse phase silica column is demonstrated. Structural features of bicyclic phosphazenes and salient aspects of their NVR spectroscopic data are discussed.