953 resultados para P450-catalyzed Hydroxylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell envelope of Mycobacterium tuberculosis (M. tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP87, but not EcBCCP87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the selfbiotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over selfbiotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-59 AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral administration (250 mg/kg) of menthofuran, a monoterpene furan, to rats once daily for 3 days caused hepatotoxicity as judged by a significant increase in serum glutamate pyruvate transaminase (SGPT) and decreases in glucose-6-phosphatase and aminopyrine N-demethylase activities. Administration of menthofuran also resulted in a decrease in the levels of liver microsomal cytochrome P-450, whereas cytochrome b(5) and NAD(P)H-cytochrome c reductase activities were not affected. These effects of menthofuran were both dose- and time-dependent. Pretreatment of rats with phenobarbital (PB) prior to menthofuran treatment potentiated hepatotoxicity suggesting that a PB-induced cytochrome P-450 catalyzed the formation of reactive metabolite(s) responsible for the hepatotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas putida CSV86, a soil bacterium, grows on 1- and 2-methylnaphthalene as the sole source of carbon and energy. In order to deduce the pathways for the biodegradation of 1- and 2-methylnaphthalene, metabolites were isolated from the spent medium and purified by thin layer chromatography. Emphasis has been placed on the structural characterisation of isolated intermediates by CC-MS, demonstration of enzyme activities in the cell free extracts and measurement of oxygen uptake by whole cells in the presence of various probable metabolic intermediates. The data obtained from such a study suggest the possibility of occurrence of multiple pathways in the degradation of 1- and 2-methylnaphthalene. We propose that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols. In another pathway the methyl side chain is hydroxylated to -CH2-OH which is further converted to -CHO and -COOH resulting in the formation of naphthoic acid as the end product. In addition to this, 2-hydroxymethylnaphthalene formed by the hydroxylation of the methyl group of 2-methylnaphthalene undergoes aromatic ring hydroxylation. The resultant dihydrodiol is further oxidised by a series of enzyme catalysed reactions to form 4-hydroxymethyl catechol as the end product of the pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT), EC 2.1.2.1, exhibits broad substrate and reaction specificity. In addition to cleaving many 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzed the decarboxylation, transamination and racemization of several substrate analogues of amino acids. To elucidate the mechanism of interaction of substrates, especially L-serine with the enzyme, a comparative study of interaction of L-serine with the enzyme from sheep liver and Escherichia coli, was carried out. The heat stability of both the enzymes was enhanced in the presence of serine, although to different extents. Thermal denaturation monitored by spectral changes indicated an alteration in the apparent T, of sheep liver and E. coli SHMTs from 55 +/- 1 degrees C to 72 +/- 3 degrees C at 40 mM serine and from 67 +/- 1 degrees C to 72 +/- 1 degrees C at 20 mM serine, respectively. Using stopped flow spectrophotometry k values of (49 +/- 5)(.)10(-3) s(-1) and (69 +/- 7).10(-3) s(-1) for sheep liver and E. coli enzymes were determined at 50 mM serine. The binding of serine monitored by intrinsic fluorescence and sedimentation velocity measurements indicated that there was no generalized change in the structure of both proteins. However, visible CD measurements indicated a change in the asymmetric environment of pyridoxal 5'-phosphate at the active site upon binding of serine to both the enzymes. The formation of an external aldimine was accompanied by a change in the secondary structure of the enzymes monitored by far UV-CD spectra. Titration microcalorimetric studies in the presence of serine (8 mM) also demonstrated a single class of binding and the conformational changes accompanying the binding of serine to the enzyme resulted in a more compact structure leading to increased thermal stability of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A versatile fungus isolated in our laboratory and identified as Mucor piriformis has been shown to effect novel and preparatively useful transformations in steroids and morphine alkaloids. The organism very effectively carries out hydroxylation of various C-19 and C-21 steroids at 7 and 14-positions. Although the organism is capable of catalysing hydroxylation at 6 beta and 11 alpha-positions, these are not the major activities. The 14 alpha-hydroxylase appears to have a broad substrate specificity. However, steroids with a bulky substitution at C-17 alpha-position or without the 4-en-3-one group are not accepted as substrates by the 14 alpha-hydroxylase system. Studies have demonstrated how various C-19 and C-21 steroids can be modified to yield new structures which are either difficult to prepare by traditional methods or hitherto unknown. The organism also very efficiently and selectively carries out the N-dealkylation of thebaine and its N-variants. Interestingly, the nor-compound formed does not get further metabolized. Since thebaine is very often used as a starting material to synthesize various morphine agonists as well as antagonists, and one of the steps involved in their preparation is the N-dealkylation reaction, the microbial process could certainly offer an alternative approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radical catalyzed thiol-ene reaction has become a useful alternative to the Huisgen-type click reaction as it helps to expand the variability in reaction conditions as well as the range of clickable entities. Thus, direct generation of hyper-branched polymers bearing peripheral allyl groups that could be clicked using a variety of functional thiols would be of immense value. A specifically designed AB(2) type monomer, that carries two allyl benzyl ethers groups and one alcohol functionality, was shown to undergo self-condensation under acid-catalyzed melt-transetherification to yield a hyperbranched polyether that carries numerous allyl end-groups. Importantly, it was shown that the kinetics of polymerization is not dramatically affected by the change of the ether unit from previously studied methyl benzyl ether to an allyl benzyl ether. The peripheral allyl groups were readily clicked quantitatively, using a variety of thiols, to generate an hydrocarbon-soluble octadecyl-derivative, amphiphilic systems using 2-mercaptoethanol and chiral amino acid (N-benzoyl cystine) derivatized hyperbranched structures; thus demonstrating the versatility of this novel class of clickable hyperscaffolds. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49:1735-1744, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mucor piriformis was used to study the mode of transformation of 16-dehydroprogesterone (I, pregna-4, 16-diene-3, 20-dione) and 17 alpha-hydroxyprogesterone (II, 17 alpha-hydroxypregn-4-ene-3, 20-dione). Biotransformation products formed from I were 14 alpha-hydroxypregna-4, 16-diene-3, 20-dione (Ia), 7 alpha, 14 alpha-dihydroxypregna-4 16-diene-3, 20-dione (Ib), 3 beta, 7 alpha, 14 alpha-trihydroxy-5 alpha-pregn-16-en-20-one (Ic), and 3 alpha, 7 alpha, 14 alpha-trihydroxy-5 alpha-pregn-16-en-20-one (Id). Metabolites Ic and Id appear to be hitherto unknown. Timecourse studies suggested that the transformation is initiated by hydroxylation at the 14 alpha-position (Ia) followed by hydroxylation at the 7 alpha-position (Ib). Microsomes (105,000 g sediment) prepared from 16-dehydroprogesterone-induced cells hydroxylate I to its 14 alpha-hydroxy derivative (Ia) in the presence of NADPH. Incubation of Ia with the organism resulted in the formation of Ib, Ic and Id. Biotransformation products formed from compound II were 17 alpha, 20 alpha-dihydroxypregn-4-en-3-one (IIa), 7 alpha, 17 alpha-dihydroxypregn-4-ene-3, 20-dione (IIb), 6 beta, 17 alpha, 20 alpha-trihydroxypregn-4-en-3-one (IIc) and 11 alpha, 17 alpha, 20 alpha-trihydroxypregn-4-en-3-one (IId). Time-course studies indicated that IIa is the initial product formed, which is further hydroxylated either at the 6 beta or 11 alpha position. Incubation of IIa with the organism resulted in the formation of IIc and IId. Reduction of the 4-en-3-one system and 20-keto group has not been observed before in organisms of the order Mucorales. In addition, M. piriformis has been shown to carry out hydroxylation at the C-6, C-7, C-11 and C-14 positions in the steroid molecules tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas maltophilia CSV89, a bacterium isolated from soil in our laboratory, grows on 1-naphthoic acid as the sole source of carbon and energy. To elucidate the pathway for degradation of 1-naphthoic acid, the metabolites were isolated from spent medium, purified by TLC, and characterized by gas chromatography-mass spectrometry. The involvement of various metabolites as intermediates in the pathway was established by demonstrating relevant enzyme activities in cell-free extracts, oxygen uptake and transformation of metabolites by the whole cells. The results obtained from such studies suggest that the degradation of 1-naphthoic acid is initiated by double hydroxylation of the aromatic ring adjacent to the one bearing the carboxyl group, resulting in the formation of 1,2-dihydroxy-8-carboxynaphthalene. The resultant diol was oxidized via 3-formyl salicylate, 2-hydroxyisophthalate, salicylate and catechol to TCA cycle intermediates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New steroid-based chiral auxiliaries 6, 9, and 12 have been synthesized from readily available cholic acid. These new chiral auxiliaries place the reactive and the shielding sites in a 1,5 relationship to each other. Diels-Alder reaction of cyclopentadiene with corresponding acrylate esters (7, 10, and 13) have been examined. Acrylates 7 and 10 yielded cycloadducts with 29-88% diastereomeric excess with excellent endo selectivity in the presence of an excess of Lewis acids such as AlCl3, BF3.OEt(2), FeCl3, SnCl4, TiCl4, and ZnCl2. Treatment of acrylate 7 with cyclopentadiene in the presence of BF3.OEt(2) at -80 degrees C gave the endo adduct (>99%) with 88% de. Lewis acid catalyzed and uncatalyzed reactions of acrylates 7 and 10 with cyclopentadiene yielded cycloadducts with opposite stereochemistry. The chiral auxiliary was recovered in a nondestructive manner only via iodolactonization. Acrylate ester of alcohol 12 did not show any selectivity in either catalyzed and uncatalyzed reactions with cyclopentadiene. The presence of a flat aromatic surface at C-7 of the steroid was found to be essential to effect high diastereoselection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe/AlOOH gels calcined and reduced at different temperatures have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, and electron microscopy in order to obtain information on the nature of the iron species formed as well as the various reduction processes. Calcination at or below 1070 K mainly gives reducible Fe3+ while calcination at higher temperatures gives substitutional Fe3+ in the form of Al2-xFexO3. The Fe3+ species in the calcined samples are, by and large, present in the form of small superparamagnetic particles. Crystallization of Al2O3 from the gels is catalyzed by Fe2O3 as well as FeAl2O4. Fe (20 wt. %)/AlOOH gels calcined at or below 870 K give FeAl2O4 when reduced in hydrogen at 1070 K or lower and a ferromagnetic Fe0-Al2O3 composite (with the metallic Fe particles >100 angstrom) when reduced at 1270 K. Samples calcined at 1220 K or higher give the Fe0-Al2O3 composite when reduced in the 870-12,70 K range, but a substantial proportion of Fe3+ remains unreduced in the form of Al2-xFexO3, showing thereby the extraordinary stability of substitutional Fe3+ to reduction even at high temperatures. Besides the ferromagnetic Fe0-Al2O3 composite, high-temperature reduction of Al2-xFexO3 yields a small proportion of superparamagnetic Fe0-Al2O3 wherein small metallic particles (<100 angstrom) are embedded in the ceramic matrix. In order to preferentially obtain the Fe0-Al2O3 composite on reduction, Fe/AlOOH gels should be calcined at low temperatures (less-than-or-equal-to 1100 K); high-temperature calcination results in Al2-xFexO3. Several modes of formation of FeAl2O4 are found possible during reduction of the gels, but a novel one is that involving the reaction, 2Fe3+ + Fe0 --> 3Fe2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physalis mottle virus (PhMV) belongs to the tymogroup of positive-strand RNA viruses with a genome size of 6 kb. Crude membrane preparations from PhMV-infected Nicotiana glutinosa plants catalyzed the synthesis of PhMV genomic RNA from endogenously bound template. Addition of exogenous genomic RNA enhanced the synthesis which was specifically inhibited by the addition of sense and antisense transcripts corresponding to 3' terminal 242 nucleotides as well as the 5' terminal 458 nucleotides of PhMV genomic RNA while yeast tRNA or ribosomal RNA failed to inhibit the synthesis. This specific inhibition suggested that the 5' and 3' non-coding regions of PhMV RNA might play an important role in viral replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfur dioxide in aqueous solutions at low pH levels exists both in molecular SO2(aq) and in hydrolyzed ionic form HSO3-. Experiments indicate that only HSO3- is the reacting species in the oxidation catalyzed by activated carbon, while SO2(aq) deactivates by competing with HSO3 for the active sites of the catalyst particles. A mechanism is proposed and a rate model is developed that also accounts for the effect of sulfuric acid (product of the oxidation) on the solubility of sulfur dioxide. It predicts first order in HSO3-, half order in dissolved oxygen, and a linear deactivation effect of SO2(aq), which are confirmed by experimental data. The deactivation reaches a constant level corresponding to saturation of the active sites by SO2(aq). Activation energy for the oxidation is 93.55 kJ mol(-1) and for deactivation is 21.4 kJ mol(-1).