928 resultados para P450 enzymes
Resumo:
Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P21, P21212 and C2, respectively.
Resumo:
In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.
Resumo:
Between 1984 and 1997, six cases of urothelial cancer and 14 cases of renal cell cancer occurred in a group of 500 underground mining workers in the copper-mining industry of the former German Democratic Republic, with high exposures to explosives containing technical dinitrotoluene. Exposure durations ranged from 7 to 37 years, and latency periods ranged from 21 to 46 years. The incidences of both urothelial and renal cell tumors in this group were much higher than anticipated on the basis of the cancer registers of the German Democratic Republic by factors of 4.5 and 14.3, respectively. The cancer cases and a representative group of 183 formerly dinitrotoluene- exposed miners of this local industry were interviewed for their working history and grouped into four exposure categories. This categorization of the 14 renal cell tumor cases revealed no dose-dependency concerning explosives in any of the four exposure categories and was similar to that of the representative group of employees, whereas the urothelial tumor cases were predominantly confined to the high-exposure categories. Furthermore, all identified tumor patients were genotyped by polymerase chain reaction, using lymphocyte DNA, regarding their genetic status of the polymorphic xenobiotic metabolizing enzymes, including the N-acetyltransferase 2 and the glutathione-S-transferases M1 and T1. This genotyping revealed remarkable distributions only for the urothelial tumor cases, who were exclusively identified as 'slow acetylators.' This points to the possibility of human carcinogenicity of dinitrotoluene, with regard to the urothelium as the target tissue.
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1-2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1 %) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis. [Article in German]
Resumo:
Aflatoxin B1, a potently carcinogenic fungal metabolite, is converted to the biologically active form by chemical oxidation using dimethyldioxirane and enzymatically by cytochrome P450 mixed-function oxidases. Both processes give rise to mixtures of the exo- and endo-8,9-epoxides. Methanolysis studies reveal exclusive trans opening of both epoxides under neutral conditions in CH3OH and CH3OH/H2O mixtures; an SN2 mechanism is postulated. Under acidic conditions, the exo isomer gives mixtures of trans and cis solvolysis products, suggesting that the reaction is, at least in part, SN1; the endo isomer gives only the trans product. The exo isomer reacts with DNA by attack of the nitrogen atom at the 7 position of guanine on C8 of the epoxide to give the trans adduct; the endo epoxide fails to form an adduct at this or any other site in DNA. The exo isomer is strongly mutagenic in a base-pair reversion assay employing Salmonella typhimurium; the endo isomer is essentially nonmutagenic. Aflatoxin B1 and its derivatives intercalate in DNA. These results are consistent with a mechanism in which intercalation of the exo epoxide optimally orients the epoxide for an SN2 reaction with guanine but intercalation of the endo isomer places the epoxide in an orientation which precludes reaction. Thus, while the exo epoxide is a potent mutagen, the endo epoxide fails to react with DNA.
Resumo:
Tobacco use is causally associated with head and neck squamous cell cancer (HNSCC). Here, we present the results of a case-control study that investigated the effects that the genetic variants of the cytochrome (CYP)1A1, CYP1B1, glutathione-S-transferase (GST)M1, GSTT1, and GSTP1 genes have on modifying the risk of smoking-related HNSCC. Allelisms of the CYP1A1, GSTT1, GSTM1, and GSTT1 genes alone were not associated with an increased risk. CYP1B1 codon 432 polymorphism was found to be a putative susceptibility factor in smoking-related HNSCC. The frequency of CYP1B1 polymorphism was significantly higher (P < 0.001) in the group of smoking cases when compared with smoking controls. Additionally, an odds ratio (OR) of 4.53 (2.62-7.98) was discovered when investigating smoking and nonsmoking cases for the susceptible genotype CYP1B1*2/*2, when compared with the presence of the genotype wild type. In combination with polymorphic variants of the GST genes, a synergistic-effect OR was observed. The calculated OR for the combined genotype CYP1B1*2/*2 and GSTM1*2/*2 was 12.8 (4.09-49.7). The calculated OR for the combined genotype was 13.4 (2.92-97.7) for CYP1B1*2/*2 and GSTT1*2/*2, and 24.1 (9.36-70.5) for the combination of CYP1B1*2/*2 and GSTT1-expressors. The impact of the polymorphic variants of the CYP1B1 gene on HNSCC risk is reflected by the strong association with the frequency of somatic mutations of the p53 gene. Smokers with susceptible genotype CYP1B1*2/*2 were 20 times more likely to show evidence of p53 mutations than were those with CYP1B1 wild type. Combined genotype analysis of CYP1B1 and GSTM1 or GSTT1 revealed interactive effects on the occurrence of p53 gene mutations. The results of the present study indicate that polymorphic variants of CYP1B1 relate significantly to the individual susceptibility of smokers to HNSCC.
Resumo:
Polymorphisms of glutathione transferases (GST) are important genetic determinants of susceptibility to environmental carcinogens (Rebbeck, 1997). The GSTs are a multigene family of dimeric enzymes involved in detoxification, and, in a few cases, the bioactivation of a variety of xenobiotics (Hayes et al., 1995). The cytosolic GST enzyme family consists of four major classes of enzymes, referred to as alpha, mu, pi and theta. Several members of this family (for example, GSTM1, GSTT1 and GSTP1) are polymorphic in human populations (Wormhoudt et al., 1999). Molecular epidemiology studies have examined the role of GST polymorphisms as susceptibility factors for environmentally and/or occupationally induced cancers (Wormhoudt et al., 1999). In particular, case-control studies showed a relationship between the GSTM1 null genotype and the development of cancer in association with smoking habits, which has been shown for cancers of the respiratory and gastrointestinal tracts as well as other cancer types (Miller et al., 1997). Only a few molecular epidemiological studies addressed the role of GSTT1 and GSTP1 polymorphisms in cancer susceptibility. Since GSTP1 is a key player in biotransformation/bioactivation of benzo(a)pyrene, GSTP1 may be even more important than GSTM1 in the prevention of tobacco-induced cancers (Harries et al., 1997; Harris et al., 1998). To date, this relationship has not been sufficiently addressed in humans. Comprehensive molecular epidemiological studies may add to the current knowledge of the role of GST polymorphisms in cancer susceptibility and extent of the knowledge gained from approaches that used phenotyping, such as GSTM1 activity as it relates to trans-stilbene oxide, or polymerase chain reaction (PCR) based genotyping of polymorphic isoenzymes (Bell et al., 1993; Pemble et al., 1994; Harries et al., 1997).
Resumo:
Dichloromethane (DCM) is thought to be metabolized in vivo by two independent pathways: a glutathione (GSH) dependent pathway that yields CO2 and a cytochrome P-450 mediated one that yields both CO and CO2 (Gargas et al 1986). With a physiologically based pharmacokinetic (PB-PK) model, Andersen et al (1987) calculate the quantitative parameters for both metabolic pathways. Using the kinetic parameters thus obtained and the results of two carcinogenicity studies with rodents (Serota et al 1986; NTP 1985), the authors then estimate the tumour risk for humans.
Resumo:
Conjugation of chemicals with glutathione (GSH) can lead to decreased or increased toxicity. A genetic deficiency in the GSH S-transferase μ class gene M1 has been hypothesized to lead to greater risk of lung cancer in smokers. Recently a gene deletion polymorphism involving the human θ enzyme T1 has been described; the enzyme is present in erythrocytes and can be readily assayed. A rat θ class enzyme, 5-5, has structural and catalytic similarity and the protein was expressed in the Salmonella typhimurium tester strain TA1535. Expression of the cDNA vector increased the mutagenicity of ethylene dibromide and several methylene dihalides. Mutations resulting from the known GSH S-transferase substrate 1,2-epoxy-3-(4′nitrophenoxy)propane were decreased in the presence of the transferase. Expression of transferase 5-5 increased mutations when 1,2,3,4-diepoxybutane (butadiene diepoxide), 4-bromo-1,2-epoxybutane, or 1,3-dichloracetone were added. The latter compound is a model for the putative 1,2-dibromo-3-chloropropane oxidation product 1-bromo-3-chloroacetone. These genotoxicity and genotyping assays may be of use in further studies of the roles of GSH S-transferase θ enzymes in bioactivation and detoxication and any changes in risk due to polymorphism.
Resumo:
Glutathione transferases are known to be important enzymes in the metabolism of xenobiotics. In humans genetic polymorphisms have been reported for the hGSTM1 and hGSTT1 genes leading to individual differences in susceptibility towards toxic effects, such as cancer. This study describes the distribution of the two polymorphisms of hGSTT1 and hGSTM1 in the normal Chinese population of Shanghai. Out of 219 healthy individuals having been genotyped for GSTTI and GSTMI, 108 (49%) were identified to be homozygously deficient for the GSTT1 gene and 107 (49%) for the GSTM1 gene.
Resumo:
The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.
Resumo:
Case reports of human accidental poisonings point to significant individual differences in human acrylonitrile metabolism and toxicity. A cohort of 59 persons with industrial handling of low levels of acrylonitrile has repetitively been studied from 1994 through 1999 as part of a medical surveillance programme. The analyses included adduct determinations of N-terminal N-(cyanoethyl)valine in haemoglobin and genotypings of the following cytochrome P-450 2E1 (CYP2E1) polymorphisms: G-1259C and C-1019T (two subjects heterozygous), A-316G (three subjects heterozygous), T-297A (15 subjects heterozygous), G-35T (eight subjects heterozygous), G4804A (two subjects heterozygous), T7668A (six subjects heterozygous). N-(Cyanoethyl)valine adduct levels were, if any, only slightly influenced by smoking and mainly determined by the external acrylonitrile exposures. The individual means and medians of N-(cyanoethyl)valine levels over the entire observation period were compared with the CYP2E1 variants (Wilcoxon rank sum test). No influences of the investigated CYP2E1 polymorphisms on the N-(cyanoethyl)valine levels appeared at the 5% level. However, there was a trend, at a level of P≃0.1, pointing to higher acrylonitrile-specific adduct levels in persons with the A-316G mutation. Higher adduct levels would be compatible with a slower CYP2E1-mediated metabolism of acrylonitrile and with lower extents of toxification to cyanide.
Resumo:
Glutathione transferases (GSTs) catalyzing the conjugation of glutathione with electrophilic substrates are important enzymes in the metabolism of xenobiotics. Several isozymes exhibit polymorphisms in humans. The two deletion polymorphisms of hGSTM1 and hGSTT1 result in total loss of enzyme activity in homozygous null genotype (GSTM1*0 and GSTT1*0 respectively) individuals (Seidegård et al. 1988; Pemble et al. 1994). Individuals that are heterozygous for hGSTT1 show distinctly lower enzyme activities than individuals carrying two functional alleles of hGSTT1 (Wiebel et al. 1996). A similar effect is conceivable for the hGSTM1 polymorphism but has not been verified so far.
Resumo:
The activities of glutathione-s-transferase (GST) and cytochrome P-450 1A1 (CYP1A1) enzymes were measured in freshly extracted epidermis of live-biopsied, migrating, southern hemisphere humpback whales (Megaptera novaeangliae). The two quantified enzyme activities did not correlate strongly with each other. Similarly, neither correlated strongly with any of the organochlorine compound groups previously measured in the superficial blubber of the sample biopsy core, likely reflecting the anticipated low levels of typical aryl-hydrocarbon receptor ligands. GST activity did not differ significantly between genders or between northward (early migration) or southward (late migration) migrating cohorts. Indeed, the inter-individual variability in GST measurements was relatively low. This observation raises the possibility that measured activities were basal activities and that GST function was inherently impacted by the fasting state of the sampled animals, as seen in other species. These results do not support the implementation of CYP1A1 or GST as effective biomarkers of organochlorine contaminant burdens in southern hemisphere populations of humpback whales as advocated for other cetacean species. Further investigation of GST activity in feeding versus fasting cohorts may, however, provide some insight into the fasting metabolism of these behaviourally adapted populations.